GetFEM++  5.3
gmm_solver_Schwarz_additive.h
Go to the documentation of this file.
1 /* -*- c++ -*- (enables emacs c++ mode) */
2 /*===========================================================================
3 
4  Copyright (C) 2002-2017 Yves Renard
5 
6  This file is a part of GetFEM++
7 
8  GetFEM++ is free software; you can redistribute it and/or modify it
9  under the terms of the GNU Lesser General Public License as published
10  by the Free Software Foundation; either version 3 of the License, or
11  (at your option) any later version along with the GCC Runtime Library
12  Exception either version 3.1 or (at your option) any later version.
13  This program is distributed in the hope that it will be useful, but
14  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
16  License and GCC Runtime Library Exception for more details.
17  You should have received a copy of the GNU Lesser General Public License
18  along with this program; if not, write to the Free Software Foundation,
19  Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
20 
21  As a special exception, you may use this file as it is a part of a free
22  software library without restriction. Specifically, if other files
23  instantiate templates or use macros or inline functions from this file,
24  or you compile this file and link it with other files to produce an
25  executable, this file does not by itself cause the resulting executable
26  to be covered by the GNU Lesser General Public License. This exception
27  does not however invalidate any other reasons why the executable file
28  might be covered by the GNU Lesser General Public License.
29 
30 ===========================================================================*/
31 
32 /**@file gmm_solver_Schwarz_additive.h
33  @author Yves Renard <Yves.Renard@insa-lyon.fr>
34  @author Michel Fournie <fournie@mip.ups-tlse.fr>
35  @date October 13, 2002.
36 */
37 
38 #ifndef GMM_SOLVERS_SCHWARZ_ADDITIVE_H__
39 #define GMM_SOLVERS_SCHWARZ_ADDITIVE_H__
40 
41 #include "gmm_kernel.h"
42 #include "gmm_superlu_interface.h"
43 #include "gmm_solver_cg.h"
44 #include "gmm_solver_gmres.h"
45 #include "gmm_solver_bicgstab.h"
46 #include "gmm_solver_qmr.h"
47 
48 namespace gmm {
49 
50  /* ******************************************************************** */
51  /* Additive Schwarz interfaced local solvers */
52  /* ******************************************************************** */
53 
54  struct using_cg {};
55  struct using_gmres {};
56  struct using_bicgstab {};
57  struct using_qmr {};
58 
59  template <typename P, typename local_solver, typename Matrix>
60  struct actual_precond {
61  typedef P APrecond;
62  static const APrecond &transform(const P &PP) { return PP; }
63  };
64 
65  template <typename Matrix1, typename Precond, typename Vector>
66  void AS_local_solve(using_cg, const Matrix1 &A, Vector &x, const Vector &b,
67  const Precond &P, iteration &iter)
68  { cg(A, x, b, P, iter); }
69 
70  template <typename Matrix1, typename Precond, typename Vector>
71  void AS_local_solve(using_gmres, const Matrix1 &A, Vector &x,
72  const Vector &b, const Precond &P, iteration &iter)
73  { gmres(A, x, b, P, 100, iter); }
74 
75  template <typename Matrix1, typename Precond, typename Vector>
76  void AS_local_solve(using_bicgstab, const Matrix1 &A, Vector &x,
77  const Vector &b, const Precond &P, iteration &iter)
78  { bicgstab(A, x, b, P, iter); }
79 
80  template <typename Matrix1, typename Precond, typename Vector>
81  void AS_local_solve(using_qmr, const Matrix1 &A, Vector &x,
82  const Vector &b, const Precond &P, iteration &iter)
83  { qmr(A, x, b, P, iter); }
84 
85 #if defined(GMM_USES_SUPERLU)
86  struct using_superlu {};
87 
88  template <typename P, typename Matrix>
89  struct actual_precond<P, using_superlu, Matrix> {
90  typedef typename linalg_traits<Matrix>::value_type value_type;
91  typedef SuperLU_factor<value_type> APrecond;
92  template <typename PR>
93  static APrecond transform(const PR &) { return APrecond(); }
94  static const APrecond &transform(const APrecond &PP) { return PP; }
95  };
96 
97  template <typename Matrix1, typename Precond, typename Vector>
98  void AS_local_solve(using_superlu, const Matrix1 &, Vector &x,
99  const Vector &b, const Precond &P, iteration &iter)
100  { P.solve(x, b); iter.set_iteration(1); }
101 #endif
102 
103  /* ******************************************************************** */
104  /* Additive Schwarz Linear system */
105  /* ******************************************************************** */
106 
107  template <typename Matrix1, typename Matrix2, typename Precond,
108  typename local_solver>
109  struct add_schwarz_mat{
110  typedef typename linalg_traits<Matrix1>::value_type value_type;
111 
112  const Matrix1 *A;
113  const std::vector<Matrix2> *vB;
114  std::vector<Matrix2> vAloc;
115  mutable iteration iter;
116  double residual;
117  mutable size_type itebilan;
118  mutable std::vector<std::vector<value_type> > gi, fi;
119  std::vector<typename actual_precond<Precond, local_solver,
120  Matrix1>::APrecond> precond1;
121 
122  void init(const Matrix1 &A_, const std::vector<Matrix2> &vB_,
123  iteration iter_, const Precond &P, double residual_);
124 
125  add_schwarz_mat(void) {}
126  add_schwarz_mat(const Matrix1 &A_, const std::vector<Matrix2> &vB_,
127  iteration iter_, const Precond &P, double residual_)
128  { init(A_, vB_, iter_, P, residual_); }
129  };
130 
131  template <typename Matrix1, typename Matrix2, typename Precond,
132  typename local_solver>
133  void add_schwarz_mat<Matrix1, Matrix2, Precond, local_solver>::init(
134  const Matrix1 &A_, const std::vector<Matrix2> &vB_,
135  iteration iter_, const Precond &P, double residual_) {
136 
137  vB = &vB_; A = &A_; iter = iter_;
138  residual = residual_;
139 
140  size_type nb_sub = vB->size();
141  vAloc.resize(nb_sub);
142  gi.resize(nb_sub); fi.resize(nb_sub);
143  precond1.resize(nb_sub);
144  std::fill(precond1.begin(), precond1.end(),
145  actual_precond<Precond, local_solver, Matrix1>::transform(P));
146  itebilan = 0;
147 
148  if (iter.get_noisy()) cout << "Init pour sub dom ";
149 #ifdef GMM_USES_MPI
150  int size,tranche,borne_sup,borne_inf,rank,tag1=11,tag2=12,tag3=13,sizepr = 0;
151  // int tab[4];
152  double t_ref,t_final;
153  MPI_Status status;
154  t_ref=MPI_Wtime();
155  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
156  MPI_Comm_size(MPI_COMM_WORLD, &size);
157  tranche=nb_sub/size;
158  borne_inf=rank*tranche;
159  borne_sup=(rank+1)*tranche;
160  // if (rank==size-1) borne_sup = nb_sub;
161 
162  cout << "Nombre de sous domaines " << borne_sup - borne_inf << endl;
163 
164  int sizeA = mat_nrows(*A);
165  gmm::csr_matrix<value_type> Acsr(sizeA, sizeA), Acsrtemp(sizeA, sizeA);
166  gmm::copy(gmm::eff_matrix(*A), Acsr);
167  int next = (rank + 1) % size;
168  int previous = (rank + size - 1) % size;
169  //communication of local information on ring pattern
170  //Each process receive Nproc-1 contributions
171 
172  for (int nproc = 0; nproc < size; ++nproc) {
173  for (size_type i = size_type(borne_inf); i < size_type(borne_sup); ++i) {
174 // for (size_type i = 0; i < nb_sub/size; ++i) {
175 // for (size_type i = 0; i < nb_sub; ++i) {
176  // size_type i=(rank+size*(j-1)+nb_sub)%nb_sub;
177 
178  cout << "Sous domaines " << i << " : " << mat_ncols((*vB)[i]) << endl;
179 #else
180  for (size_type i = 0; i < nb_sub; ++i) {
181 #endif
182 
183  if (iter.get_noisy()) cout << i << " " << std::flush;
184  Matrix2 Maux(mat_ncols((*vB)[i]), mat_nrows((*vB)[i]));
185 
186 #ifdef GMM_USES_MPI
187  Matrix2 Maux2(mat_ncols((*vB)[i]), mat_ncols((*vB)[i]));
188  if (nproc == 0) {
189  gmm::resize(vAloc[i], mat_ncols((*vB)[i]), mat_ncols((*vB)[i]));
190  gmm::clear(vAloc[i]);
191  }
192  gmm::mult(gmm::transposed((*vB)[i]), Acsr, Maux);
193  gmm::mult(Maux, (*vB)[i], Maux2);
194  gmm::add(Maux2, vAloc[i]);
195 #else
196  gmm::resize(vAloc[i], mat_ncols((*vB)[i]), mat_ncols((*vB)[i]));
197  gmm::mult(gmm::transposed((*vB)[i]), *A, Maux);
198  gmm::mult(Maux, (*vB)[i], vAloc[i]);
199 #endif
200 
201 #ifdef GMM_USES_MPI
202  if (nproc == size - 1 ) {
203 #endif
204  precond1[i].build_with(vAloc[i]);
205  gmm::resize(fi[i], mat_ncols((*vB)[i]));
206  gmm::resize(gi[i], mat_ncols((*vB)[i]));
207 #ifdef GMM_USES_MPI
208  }
209 #else
210  }
211 #endif
212 #ifdef GMM_USES_MPI
213  }
214  if (nproc != size - 1) {
215  MPI_Sendrecv(&(Acsr.jc[0]), sizeA+1, MPI_INT, next, tag2,
216  &(Acsrtemp.jc[0]), sizeA+1, MPI_INT, previous, tag2,
217  MPI_COMM_WORLD, &status);
218  if (Acsrtemp.jc[sizeA] > size_type(sizepr)) {
219  sizepr = Acsrtemp.jc[sizeA];
220  gmm::resize(Acsrtemp.pr, sizepr);
221  gmm::resize(Acsrtemp.ir, sizepr);
222  }
223  MPI_Sendrecv(&(Acsr.ir[0]), Acsr.jc[sizeA], MPI_INT, next, tag1,
224  &(Acsrtemp.ir[0]), Acsrtemp.jc[sizeA], MPI_INT, previous, tag1,
225  MPI_COMM_WORLD, &status);
226 
227  MPI_Sendrecv(&(Acsr.pr[0]), Acsr.jc[sizeA], mpi_type(value_type()), next, tag3,
228  &(Acsrtemp.pr[0]), Acsrtemp.jc[sizeA], mpi_type(value_type()), previous, tag3,
229  MPI_COMM_WORLD, &status);
230  gmm::copy(Acsrtemp, Acsr);
231  }
232  }
233  t_final=MPI_Wtime();
234  cout<<"temps boucle precond "<< t_final-t_ref<<endl;
235 #endif
236  if (iter.get_noisy()) cout << "\n";
237  }
238 
239  template <typename Matrix1, typename Matrix2, typename Precond,
240  typename Vector2, typename Vector3, typename local_solver>
241  void mult(const add_schwarz_mat<Matrix1, Matrix2, Precond, local_solver> &M,
242  const Vector2 &p, Vector3 &q) {
243  size_type itebilan = 0;
244 #ifdef GMM_USES_MPI
245  static double tmult_tot = 0.0;
246  double t_ref = MPI_Wtime();
247 #endif
248  // cout << "tmult AS begin " << endl;
249  mult(*(M.A), p, q);
250 #ifdef GMM_USES_MPI
251  tmult_tot += MPI_Wtime()-t_ref;
252  cout << "tmult_tot = " << tmult_tot << endl;
253 #endif
254  std::vector<double> qbis(gmm::vect_size(q));
255  std::vector<double> qter(gmm::vect_size(q));
256 #ifdef GMM_USES_MPI
257  // MPI_Status status;
258  // MPI_Request request,request1;
259  // int tag=111;
260  int size,tranche,borne_sup,borne_inf,rank;
261  size_type nb_sub=M.fi.size();
262  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
263  MPI_Comm_size(MPI_COMM_WORLD, &size);
264  tranche=nb_sub/size;
265  borne_inf=rank*tranche;
266  borne_sup=(rank+1)*tranche;
267  // if (rank==size-1) borne_sup=nb_sub;
268  // int next = (rank + 1) % size;
269  // int previous = (rank + size - 1) % size;
270  t_ref = MPI_Wtime();
271  for (size_type i = size_type(borne_inf); i < size_type(borne_sup); ++i)
272 // for (size_type i = 0; i < nb_sub/size; ++i)
273  // for (size_type j = 0; j < nb_sub; ++j)
274 #else
275  for (size_type i = 0; i < M.fi.size(); ++i)
276 #endif
277  {
278 #ifdef GMM_USES_MPI
279  // size_type i=j; // (rank+size*(j-1)+nb_sub)%nb_sub;
280 #endif
281  gmm::mult(gmm::transposed((*(M.vB))[i]), q, M.fi[i]);
282  M.iter.init();
283  AS_local_solve(local_solver(), (M.vAloc)[i], (M.gi)[i],
284  (M.fi)[i],(M.precond1)[i],M.iter);
285  itebilan = std::max(itebilan, M.iter.get_iteration());
286  }
287 
288 #ifdef GMM_USES_MPI
289  cout << "First AS loop time " << MPI_Wtime() - t_ref << endl;
290 #endif
291 
292  gmm::clear(q);
293 #ifdef GMM_USES_MPI
294  t_ref = MPI_Wtime();
295  // for (size_type j = 0; j < nb_sub; ++j)
296  for (size_type i = size_type(borne_inf); i < size_type(borne_sup); ++i)
297 
298 #else
299  for (size_type i = 0; i < M.gi.size(); ++i)
300 #endif
301  {
302 
303 #ifdef GMM_USES_MPI
304  // size_type i=j; // (rank+size*(j-1)+nb_sub)%nb_sub;
305 // gmm::mult((*(M.vB))[i], M.gi[i], qbis,qbis);
306  gmm::mult((*(M.vB))[i], M.gi[i], qter);
307  add(qter,qbis,qbis);
308 #else
309  gmm::mult((*(M.vB))[i], M.gi[i], q, q);
310 #endif
311  }
312 #ifdef GMM_USES_MPI
313  //WARNING this add only if you use the ring pattern below
314  // need to do this below if using a n explicit ring pattern communication
315 
316 // add(qbis,q,q);
317  cout << "Second AS loop time " << MPI_Wtime() - t_ref << endl;
318 #endif
319 
320 
321 #ifdef GMM_USES_MPI
322  // int tag1=11;
323  static double t_tot = 0.0;
324  double t_final;
325  t_ref=MPI_Wtime();
326 // int next = (rank + 1) % size;
327 // int previous = (rank + size - 1) % size;
328  //communication of local information on ring pattern
329  //Each process receive Nproc-1 contributions
330 
331 // if (size > 1) {
332 // for (int nproc = 0; nproc < size-1; ++nproc)
333 // {
334 
335 // MPI_Sendrecv(&(qbis[0]), gmm::vect_size(q), MPI_DOUBLE, next, tag1,
336 // &(qter[0]), gmm::vect_size(q),MPI_DOUBLE,previous,tag1,
337 // MPI_COMM_WORLD,&status);
338 // gmm::copy(qter, qbis);
339 // add(qbis,q,q);
340 // }
341 // }
342  MPI_Allreduce(&(qbis[0]), &(q[0]),gmm::vect_size(q), MPI_DOUBLE,
343  MPI_SUM,MPI_COMM_WORLD);
344  t_final=MPI_Wtime();
345  t_tot += t_final-t_ref;
346  cout<<"["<< rank<<"] temps reduce Resol "<< t_final-t_ref << " t_tot = " << t_tot << endl;
347 #endif
348 
349  if (M.iter.get_noisy() > 0) cout << "itebloc = " << itebilan << endl;
350  M.itebilan += itebilan;
351  M.iter.set_resmax((M.iter.get_resmax() + M.residual) * 0.5);
352  }
353 
354  template <typename Matrix1, typename Matrix2, typename Precond,
355  typename Vector2, typename Vector3, typename local_solver>
356  void mult(const add_schwarz_mat<Matrix1, Matrix2, Precond, local_solver> &M,
357  const Vector2 &p, const Vector3 &q) {
358  mult(M, p, const_cast<Vector3 &>(q));
359  }
360 
361  template <typename Matrix1, typename Matrix2, typename Precond,
362  typename Vector2, typename Vector3, typename Vector4,
363  typename local_solver>
364  void mult(const add_schwarz_mat<Matrix1, Matrix2, Precond, local_solver> &M,
365  const Vector2 &p, const Vector3 &p2, Vector4 &q)
366  { mult(M, p, q); add(p2, q); }
367 
368  template <typename Matrix1, typename Matrix2, typename Precond,
369  typename Vector2, typename Vector3, typename Vector4,
370  typename local_solver>
371  void mult(const add_schwarz_mat<Matrix1, Matrix2, Precond, local_solver> &M,
372  const Vector2 &p, const Vector3 &p2, const Vector4 &q)
373  { mult(M, p, const_cast<Vector4 &>(q)); add(p2, q); }
374 
375  /* ******************************************************************** */
376  /* Additive Schwarz interfaced global solvers */
377  /* ******************************************************************** */
378 
379  template <typename ASM_type, typename Vect>
380  void AS_global_solve(using_cg, const ASM_type &ASM, Vect &x,
381  const Vect &b, iteration &iter)
382  { cg(ASM, x, b, *(ASM.A), identity_matrix(), iter); }
383 
384  template <typename ASM_type, typename Vect>
385  void AS_global_solve(using_gmres, const ASM_type &ASM, Vect &x,
386  const Vect &b, iteration &iter)
387  { gmres(ASM, x, b, identity_matrix(), 100, iter); }
388 
389  template <typename ASM_type, typename Vect>
390  void AS_global_solve(using_bicgstab, const ASM_type &ASM, Vect &x,
391  const Vect &b, iteration &iter)
392  { bicgstab(ASM, x, b, identity_matrix(), iter); }
393 
394  template <typename ASM_type, typename Vect>
395  void AS_global_solve(using_qmr,const ASM_type &ASM, Vect &x,
396  const Vect &b, iteration &iter)
397  { qmr(ASM, x, b, identity_matrix(), iter); }
398 
399 #if defined(GMM_USES_SUPERLU)
400  template <typename ASM_type, typename Vect>
401  void AS_global_solve(using_superlu, const ASM_type &, Vect &,
402  const Vect &, iteration &) {
403  GMM_ASSERT1(false, "You cannot use SuperLU as "
404  "global solver in additive Schwarz meethod");
405  }
406 #endif
407 
408  /* ******************************************************************** */
409  /* Linear Additive Schwarz method */
410  /* ******************************************************************** */
411  /* ref : Domain decomposition algorithms for the p-version finite */
412  /* element method for elliptic problems, Luca F. Pavarino, */
413  /* PhD thesis, Courant Institute of Mathematical Sciences, 1992. */
414  /* ******************************************************************** */
415 
416  /** Function to call if the ASM matrix is precomputed for successive solve
417  * with the same system.
418  */
419  template <typename Matrix1, typename Matrix2,
420  typename Vector2, typename Vector3, typename Precond,
421  typename local_solver, typename global_solver>
423  add_schwarz_mat<Matrix1, Matrix2, Precond, local_solver> &ASM, Vector3 &u,
424  const Vector2 &f, iteration &iter, const global_solver&) {
425 
426  typedef typename linalg_traits<Matrix1>::value_type value_type;
427 
428  size_type nb_sub = ASM.vB->size(), nb_dof = gmm::vect_size(f);
429  ASM.itebilan = 0;
430  std::vector<value_type> g(nb_dof);
431  std::vector<value_type> gbis(nb_dof);
432 #ifdef GMM_USES_MPI
433  double t_init=MPI_Wtime();
434  int size,tranche,borne_sup,borne_inf,rank;
435  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
436  MPI_Comm_size(MPI_COMM_WORLD, &size);
437  tranche=nb_sub/size;
438  borne_inf=rank*tranche;
439  borne_sup=(rank+1)*tranche;
440  // if (rank==size-1) borne_sup=nb_sub*size;
441  for (size_type i = size_type(borne_inf); i < size_type(borne_sup); ++i)
442 // for (size_type i = 0; i < nb_sub/size; ++i)
443  // for (size_type j = 0; j < nb_sub; ++j)
444  // for (size_type i = rank; i < nb_sub; i+=size)
445 #else
446  for (size_type i = 0; i < nb_sub; ++i)
447 #endif
448  {
449 
450 #ifdef GMM_USES_MPI
451  // size_type i=j; // (rank+size*(j-1)+nb_sub)%nb_sub;
452 #endif
453  gmm::mult(gmm::transposed((*(ASM.vB))[i]), f, ASM.fi[i]);
454  ASM.iter.init();
455  AS_local_solve(local_solver(), ASM.vAloc[i], ASM.gi[i], ASM.fi[i],
456  ASM.precond1[i], ASM.iter);
457  ASM.itebilan = std::max(ASM.itebilan, ASM.iter.get_iteration());
458 #ifdef GMM_USES_MPI
459  gmm::mult((*(ASM.vB))[i], ASM.gi[i], gbis,gbis);
460 #else
461  gmm::mult((*(ASM.vB))[i], ASM.gi[i], g, g);
462 #endif
463  }
464 #ifdef GMM_USES_MPI
465  cout<<"temps boucle init "<< MPI_Wtime()-t_init<<endl;
466  double t_ref,t_final;
467  t_ref=MPI_Wtime();
468  MPI_Allreduce(&(gbis[0]), &(g[0]),gmm::vect_size(g), MPI_DOUBLE,
469  MPI_SUM,MPI_COMM_WORLD);
470  t_final=MPI_Wtime();
471  cout<<"temps reduce init "<< t_final-t_ref<<endl;
472 #endif
473 #ifdef GMM_USES_MPI
474  t_ref=MPI_Wtime();
475  cout<<"begin global AS"<<endl;
476 #endif
477  AS_global_solve(global_solver(), ASM, u, g, iter);
478 #ifdef GMM_USES_MPI
479  t_final=MPI_Wtime();
480  cout<<"temps AS Global Solve "<< t_final-t_ref<<endl;
481 #endif
482  if (iter.get_noisy())
483  cout << "Total number of internal iterations : " << ASM.itebilan << endl;
484  }
485 
486  /** Global function. Compute the ASM matrix and call the previous function.
487  * The ASM matrix represent the preconditionned linear system.
488  */
489  template <typename Matrix1, typename Matrix2,
490  typename Vector2, typename Vector3, typename Precond,
491  typename local_solver, typename global_solver>
492  void additive_schwarz(const Matrix1 &A, Vector3 &u,
493  const Vector2 &f, const Precond &P,
494  const std::vector<Matrix2> &vB,
495  iteration &iter, local_solver,
496  global_solver) {
497  iter.set_rhsnorm(vect_norm2(f));
498  if (iter.get_rhsnorm() == 0.0) { gmm::clear(u); return; }
499  iteration iter2 = iter; iter2.reduce_noisy();
500  iter2.set_maxiter(size_type(-1));
501  add_schwarz_mat<Matrix1, Matrix2, Precond, local_solver>
502  ASM(A, vB, iter2, P, iter.get_resmax());
503  additive_schwarz(ASM, u, f, iter, global_solver());
504  }
505 
506  /* ******************************************************************** */
507  /* Sequential Non-Linear Additive Schwarz method */
508  /* ******************************************************************** */
509  /* ref : Nonlinearly Preconditionned Inexact Newton Algorithms, */
510  /* Xiao-Chuan Cai, David E. Keyes, */
511  /* SIAM J. Sci. Comp. 24: p183-200. l */
512  /* ******************************************************************** */
513 
514  template <typename Matrixt, typename MatrixBi>
515  class NewtonAS_struct {
516 
517  public :
518  typedef Matrixt tangent_matrix_type;
519  typedef MatrixBi B_matrix_type;
520  typedef typename linalg_traits<Matrixt>::value_type value_type;
521  typedef std::vector<value_type> Vector;
522 
523  virtual size_type size(void) = 0;
524  virtual const std::vector<MatrixBi> &get_vB() = 0;
525 
526  virtual void compute_F(Vector &f, Vector &x) = 0;
527  virtual void compute_tangent_matrix(Matrixt &M, Vector &x) = 0;
528  // compute Bi^T grad(F(X)) Bi
529  virtual void compute_sub_tangent_matrix(Matrixt &Mloc, Vector &x,
530  size_type i) = 0;
531  // compute Bi^T F(X)
532  virtual void compute_sub_F(Vector &fi, Vector &x, size_type i) = 0;
533 
534  virtual ~NewtonAS_struct() {}
535  };
536 
537  template <typename Matrixt, typename MatrixBi>
538  struct AS_exact_gradient {
539  const std::vector<MatrixBi> &vB;
540  std::vector<Matrixt> vM;
541  std::vector<Matrixt> vMloc;
542 
543  void init(void) {
544  for (size_type i = 0; i < vB.size(); ++i) {
545  Matrixt aux(gmm::mat_ncols(vB[i]), gmm::mat_ncols(vM[i]));
546  gmm::resize(vMloc[i], gmm::mat_ncols(vB[i]), gmm::mat_ncols(vB[i]));
547  gmm::mult(gmm::transposed(vB[i]), vM[i], aux);
548  gmm::mult(aux, vB[i], vMloc[i]);
549  }
550  }
551  AS_exact_gradient(const std::vector<MatrixBi> &vB_) : vB(vB_) {
552  vM.resize(vB.size()); vMloc.resize(vB.size());
553  for (size_type i = 0; i < vB.size(); ++i) {
554  gmm::resize(vM[i], gmm::mat_nrows(vB[i]), gmm::mat_nrows(vB[i]));
555  }
556  }
557  };
558 
559  template <typename Matrixt, typename MatrixBi,
560  typename Vector2, typename Vector3>
561  void mult(const AS_exact_gradient<Matrixt, MatrixBi> &M,
562  const Vector2 &p, Vector3 &q) {
563  gmm::clear(q);
564  typedef typename gmm::linalg_traits<Vector3>::value_type T;
565  std::vector<T> v(gmm::vect_size(p)), w, x;
566  for (size_type i = 0; i < M.vB.size(); ++i) {
567  w.resize(gmm::mat_ncols(M.vB[i]));
568  x.resize(gmm::mat_ncols(M.vB[i]));
569  gmm::mult(M.vM[i], p, v);
570  gmm::mult(gmm::transposed(M.vB[i]), v, w);
571  double rcond;
572  SuperLU_solve(M.vMloc[i], x, w, rcond);
573  // gmm::iteration iter(1E-10, 0, 100000);
574  //gmm::gmres(M.vMloc[i], x, w, gmm::identity_matrix(), 50, iter);
575  gmm::mult_add(M.vB[i], x, q);
576  }
577  }
578 
579  template <typename Matrixt, typename MatrixBi,
580  typename Vector2, typename Vector3>
581  void mult(const AS_exact_gradient<Matrixt, MatrixBi> &M,
582  const Vector2 &p, const Vector3 &q) {
583  mult(M, p, const_cast<Vector3 &>(q));
584  }
585 
586  template <typename Matrixt, typename MatrixBi,
587  typename Vector2, typename Vector3, typename Vector4>
588  void mult(const AS_exact_gradient<Matrixt, MatrixBi> &M,
589  const Vector2 &p, const Vector3 &p2, Vector4 &q)
590  { mult(M, p, q); add(p2, q); }
591 
592  template <typename Matrixt, typename MatrixBi,
593  typename Vector2, typename Vector3, typename Vector4>
594  void mult(const AS_exact_gradient<Matrixt, MatrixBi> &M,
595  const Vector2 &p, const Vector3 &p2, const Vector4 &q)
596  { mult(M, p, const_cast<Vector4 &>(q)); add(p2, q); }
597 
598  struct S_default_newton_line_search {
599 
600  double conv_alpha, conv_r;
601  size_t it, itmax, glob_it;
602 
603  double alpha, alpha_old, alpha_mult, first_res, alpha_max_ratio;
604  double alpha_min_ratio, alpha_min;
605  size_type count, count_pat;
606  bool max_ratio_reached;
607  double alpha_max_ratio_reached, r_max_ratio_reached;
608  size_type it_max_ratio_reached;
609 
610 
611  double converged_value(void) { return conv_alpha; };
612  double converged_residual(void) { return conv_r; };
613 
614  virtual void init_search(double r, size_t git, double = 0.0) {
615  alpha_min_ratio = 0.9;
616  alpha_min = 1e-10;
617  alpha_max_ratio = 10.0;
618  alpha_mult = 0.25;
619  itmax = size_type(-1);
620  glob_it = git; if (git <= 1) count_pat = 0;
621  conv_alpha = alpha = alpha_old = 1.;
622  conv_r = first_res = r; it = 0;
623  count = 0;
624  max_ratio_reached = false;
625  }
626  virtual double next_try(void) {
627  alpha_old = alpha;
628  if (alpha >= 0.4) alpha *= 0.5; else alpha *= alpha_mult; ++it;
629  return alpha_old;
630  }
631  virtual bool is_converged(double r, double = 0.0) {
632  // cout << "r = " << r << " alpha = " << alpha / alpha_mult << " count_pat = " << count_pat << endl;
633  if (!max_ratio_reached && r < first_res * alpha_max_ratio) {
634  alpha_max_ratio_reached = alpha_old; r_max_ratio_reached = r;
635  it_max_ratio_reached = it; max_ratio_reached = true;
636  }
637  if (max_ratio_reached && r < r_max_ratio_reached * 0.5
638  && r > first_res * 1.1 && it <= it_max_ratio_reached+1) {
639  alpha_max_ratio_reached = alpha_old; r_max_ratio_reached = r;
640  it_max_ratio_reached = it;
641  }
642  if (count == 0 || r < conv_r)
643  { conv_r = r; conv_alpha = alpha_old; count = 1; }
644  if (conv_r < first_res) ++count;
645 
646  if (r < first_res * alpha_min_ratio)
647  { count_pat = 0; return true; }
648  if (count >= 5 || (alpha < alpha_min && max_ratio_reached)) {
649  if (conv_r < first_res * 0.99) count_pat = 0;
650  if (/*gmm::random() * 50. < -log(conv_alpha)-4.0 ||*/ count_pat >= 3)
651  { conv_r=r_max_ratio_reached; conv_alpha=alpha_max_ratio_reached; }
652  if (conv_r >= first_res * 0.9999) count_pat++;
653  return true;
654  }
655  return false;
656  }
657  S_default_newton_line_search(void) { count_pat = 0; }
658  };
659 
660 
661 
662  template <typename Matrixt, typename MatrixBi, typename Vector,
663  typename Precond, typename local_solver, typename global_solver>
664  void Newton_additive_Schwarz(NewtonAS_struct<Matrixt, MatrixBi> &NS,
665  const Vector &u_,
666  iteration &iter, const Precond &P,
667  local_solver, global_solver) {
668  Vector &u = const_cast<Vector &>(u_);
669  typedef typename linalg_traits<Vector>::value_type value_type;
670  typedef typename number_traits<value_type>::magnitude_type mtype;
671  typedef actual_precond<Precond, local_solver, Matrixt> chgt_precond;
672 
673  double residual = iter.get_resmax();
674 
675  S_default_newton_line_search internal_ls;
676  S_default_newton_line_search external_ls;
677 
678  typename chgt_precond::APrecond PP = chgt_precond::transform(P);
679  iter.set_rhsnorm(mtype(1));
680  iteration iternc(iter);
681  iternc.reduce_noisy(); iternc.set_maxiter(size_type(-1));
682  iteration iter2(iternc);
683  iteration iter3(iter2); iter3.reduce_noisy();
684  iteration iter4(iter3);
685  iternc.set_name("Local Newton");
686  iter2.set_name("Linear System for Global Newton");
687  iternc.set_resmax(residual/100.0);
688  iter3.set_resmax(residual/10000.0);
689  iter2.set_resmax(residual/1000.0);
690  iter4.set_resmax(residual/1000.0);
691  std::vector<value_type> rhs(NS.size()), x(NS.size()), d(NS.size());
692  std::vector<value_type> xi, xii, fi, di;
693 
694  std::vector< std::vector<value_type> > vx(NS.get_vB().size());
695  for (size_type i = 0; i < NS.get_vB().size(); ++i) // for exact gradient
696  vx[i].resize(NS.size()); // for exact gradient
697 
698  Matrixt Mloc, M(NS.size(), NS.size());
699  NS.compute_F(rhs, u);
700  mtype act_res=gmm::vect_norm2(rhs), act_res_new(0), precond_res = act_res;
701  mtype alpha;
702 
703  while(!iter.finished(std::min(act_res, precond_res))) {
704  for (int SOR_step = 0; SOR_step >= 0; --SOR_step) {
705  gmm::clear(rhs);
706  for (size_type isd = 0; isd < NS.get_vB().size(); ++isd) {
707  const MatrixBi &Bi = (NS.get_vB())[isd];
708  size_type si = mat_ncols(Bi);
709  gmm::resize(Mloc, si, si);
710  xi.resize(si); xii.resize(si); fi.resize(si); di.resize(si);
711 
712  iternc.init();
713  iternc.set_maxiter(30); // ?
714  if (iternc.get_noisy())
715  cout << "Non-linear local problem " << isd << endl;
716  gmm::clear(xi);
717  gmm::copy(u, x);
718  NS.compute_sub_F(fi, x, isd); gmm::scale(fi, value_type(-1));
719  mtype r = gmm::vect_norm2(fi), r_t(r);
720  if (r > value_type(0)) {
721  iternc.set_rhsnorm(std::max(r, mtype(1)));
722  while(!iternc.finished(r)) {
723  NS.compute_sub_tangent_matrix(Mloc, x, isd);
724 
725  PP.build_with(Mloc);
726  iter3.init();
727  AS_local_solve(local_solver(), Mloc, di, fi, PP, iter3);
728 
729  internal_ls.init_search(r, iternc.get_iteration());
730  do {
731  alpha = internal_ls.next_try();
732  gmm::add(xi, gmm::scaled(di, -alpha), xii);
733  gmm::mult(Bi, gmm::scaled(xii, -1.0), u, x);
734  NS.compute_sub_F(fi, x, isd); gmm::scale(fi, value_type(-1));
735  r_t = gmm::vect_norm2(fi);
736  } while (!internal_ls.is_converged(r_t));
737 
738  if (alpha != internal_ls.converged_value()) {
739  alpha = internal_ls.converged_value();
740  gmm::add(xi, gmm::scaled(di, -alpha), xii);
741  gmm::mult(Bi, gmm::scaled(xii, -1.0), u, x);
742  NS.compute_sub_F(fi, x, isd); gmm::scale(fi, value_type(-1));
743  r_t = gmm::vect_norm2(fi);
744  }
745  gmm::copy(x, vx[isd]); // for exact gradient
746 
747  if (iternc.get_noisy()) cout << "(step=" << alpha << ")\t";
748  ++iternc; r = r_t; gmm::copy(xii, xi);
749  }
750  if (SOR_step) gmm::mult(Bi, gmm::scaled(xii, -1.0), u, u);
751  gmm::mult(Bi, gmm::scaled(xii, -1.0), rhs, rhs);
752  }
753  }
754  precond_res = gmm::vect_norm2(rhs);
755  if (SOR_step) cout << "SOR step residual = " << precond_res << endl;
756  if (precond_res < residual) break;
757  cout << "Precond residual = " << precond_res << endl;
758  }
759 
760  iter2.init();
761  // solving linear system for the global Newton method
762  if (0) {
763  NS.compute_tangent_matrix(M, u);
764  add_schwarz_mat<Matrixt, MatrixBi, Precond, local_solver>
765  ASM(M, NS.get_vB(), iter4, P, iter.get_resmax());
766  AS_global_solve(global_solver(), ASM, d, rhs, iter2);
767  }
768  else { // for exact gradient
769  AS_exact_gradient<Matrixt, MatrixBi> eg(NS.get_vB());
770  for (size_type i = 0; i < NS.get_vB().size(); ++i) {
771  NS.compute_tangent_matrix(eg.vM[i], vx[i]);
772  }
773  eg.init();
774  gmres(eg, d, rhs, gmm::identity_matrix(), 50, iter2);
775  }
776 
777  // gmm::add(gmm::scaled(rhs, 0.1), u); ++iter;
778  external_ls.init_search(act_res, iter.get_iteration());
779  do {
780  alpha = external_ls.next_try();
781  gmm::add(gmm::scaled(d, alpha), u, x);
782  NS.compute_F(rhs, x);
783  act_res_new = gmm::vect_norm2(rhs);
784  } while (!external_ls.is_converged(act_res_new));
785 
786  if (alpha != external_ls.converged_value()) {
787  alpha = external_ls.converged_value();
788  gmm::add(gmm::scaled(d, alpha), u, x);
789  NS.compute_F(rhs, x);
790  act_res_new = gmm::vect_norm2(rhs);
791  }
792 
793  if (iter.get_noisy() > 1) cout << endl;
794  act_res = act_res_new;
795  if (iter.get_noisy()) cout << "(step=" << alpha << ")\t unprecond res = " << act_res << " ";
796 
797 
798  ++iter; gmm::copy(x, u);
799  }
800  }
801 
802 }
803 
804 
805 #endif // GMM_SOLVERS_SCHWARZ_ADDITIVE_H__
BiCGStab iterative solver.
The Iteration object calculates whether the solution has reached the desired accuracy, or whether the maximum number of iterations has been reached.
Definition: gmm_iter.h:53
Quasi-Minimal Residual iterative solver.
Interface with SuperLU (LU direct solver for sparse matrices).
GMRES (Generalized Minimum Residual) iterative solver.
number_traits< typename linalg_traits< V >::value_type >::magnitude_type vect_norm2(const V &v)
Euclidean norm of a vector.
Definition: gmm_blas.h:557
size_t size_type
used as the common size type in the library
Definition: bgeot_poly.h:49
void gmres(const Mat &A, Vec &x, const VecB &b, const Precond &M, int restart, iteration &outer, Basis &KS)
Generalized Minimum Residual.
void resize(V &v, size_type n)
*/
Definition: gmm_blas.h:209
Include the base gmm files.
void clear(L &l)
clear (fill with zeros) a vector or matrix.
Definition: gmm_blas.h:59
Conjugate gradient iterative solver.
void mult_add(const L1 &l1, const L2 &l2, L3 &l3)
*/
Definition: gmm_blas.h:1779
void additive_schwarz(add_schwarz_mat< Matrix1, Matrix2, Precond, local_solver > &ASM, Vector3 &u, const Vector2 &f, iteration &iter, const global_solver &)
Function to call if the ASM matrix is precomputed for successive solve with the same system...
void resize(M &v, size_type m, size_type n)
*/
Definition: gmm_blas.h:231
void qmr(const Matrix &A, Vector &x, const VectorB &b, const Precond1 &M1, iteration &iter)
Quasi-Minimal Residual.
void add(const L1 &l1, L2 &l2)
*/
Definition: gmm_blas.h:1268