GetFEM++  5.3
gmm_solver_qmr.h
Go to the documentation of this file.
1 /* -*- c++ -*- (enables emacs c++ mode) */
2 /*===========================================================================
3 
4  Copyright (C) 2002-2017 Yves Renard
5 
6  This file is a part of GetFEM++
7 
8  GetFEM++ is free software; you can redistribute it and/or modify it
9  under the terms of the GNU Lesser General Public License as published
10  by the Free Software Foundation; either version 3 of the License, or
11  (at your option) any later version along with the GCC Runtime Library
12  Exception either version 3.1 or (at your option) any later version.
13  This program is distributed in the hope that it will be useful, but
14  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
16  License and GCC Runtime Library Exception for more details.
17  You should have received a copy of the GNU Lesser General Public License
18  along with this program; if not, write to the Free Software Foundation,
19  Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
20 
21  As a special exception, you may use this file as it is a part of a free
22  software library without restriction. Specifically, if other files
23  instantiate templates or use macros or inline functions from this file,
24  or you compile this file and link it with other files to produce an
25  executable, this file does not by itself cause the resulting executable
26  to be covered by the GNU Lesser General Public License. This exception
27  does not however invalidate any other reasons why the executable file
28  might be covered by the GNU Lesser General Public License.
29 
30 ===========================================================================*/
31 
32 // This file is a modified version of qmr.h from ITL.
33 // See http://osl.iu.edu/research/itl/
34 // Following the corresponding Copyright notice.
35 //===========================================================================
36 //
37 // Copyright (c) 1997-2001, The Trustees of Indiana University.
38 // All rights reserved.
39 // Redistribution and use in source and binary forms, with or without
40 // modification, are permitted provided that the following conditions are met:
41 //
42 // * Redistributions of source code must retain the above copyright
43 // notice, this list of conditions and the following disclaimer.
44 // * Redistributions in binary form must reproduce the above copyright
45 // notice, this list of conditions and the following disclaimer in the
46 // documentation and/or other materials provided with the distribution.
47 // * Neither the name of the University of Notre Dame nor the
48 // names of its contributors may be used to endorse or promote products
49 // derived from this software without specific prior written permission.
50 //
51 // THIS SOFTWARE IS PROVIDED BY THE TRUSTEES OF INDIANA UNIVERSITY AND
52 // CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
53 // BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
54 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE TRUSTEES
55 // OF INDIANA UNIVERSITY AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
56 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
57 // NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
61 // THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 //
63 //===========================================================================
64 
65 /**@file gmm_solver_qmr.h
66  @author Andrew Lumsdaine <lums@osl.iu.edu>
67  @author Lie-Quan Lee <llee@osl.iu.edu>
68  @author Yves Renard <Yves.Renard@insa-lyon.fr>
69  @date October 13, 2002.
70  @brief Quasi-Minimal Residual iterative solver.
71 */
72 #ifndef GMM_QMR_H
73 #define GMM_QMR_H
74 
75 #include "gmm_kernel.h"
76 #include "gmm_iter.h"
77 
78 namespace gmm {
79 
80  /** Quasi-Minimal Residual.
81 
82  This routine solves the unsymmetric linear system Ax = b using
83  the Quasi-Minimal Residual method.
84 
85  See: R. W. Freund and N. M. Nachtigal, A quasi-minimal residual
86  method for non-Hermitian linear systems, Numerical Math.,
87  60(1991), pp. 315-339
88 
89  Preconditioner - Incomplete LU, Incomplete LU with threshold,
90  SSOR or identity_preconditioner.
91  */
92  template <typename Matrix, typename Vector, typename VectorB,
93  typename Precond1>
94  void qmr(const Matrix &A, Vector &x, const VectorB &b, const Precond1 &M1,
95  iteration& iter) {
96 
97  typedef typename linalg_traits<Vector>::value_type T;
98  typedef typename number_traits<T>::magnitude_type R;
99 
100  T delta(0), ep(0), beta(0), theta_1(0), gamma_1(0);
101  T theta(0), gamma(1), eta(-1);
102  R rho_1(0), rho, xi;
103 
104  typedef typename temporary_vector<Vector>::vector_type TmpVec;
105  size_type nn = vect_size(x);
106  TmpVec r(nn), v_tld(nn), y(nn), w_tld(nn), z(nn), v(nn), w(nn);
107  TmpVec y_tld(nn), z_tld(nn), p(nn), q(nn), p_tld(nn), d(nn), s(nn);
108 
109  iter.set_rhsnorm(double(gmm::vect_norm2(b)));
110  if (iter.get_rhsnorm() == 0.0) { clear(x); return; }
111 
112  gmm::mult(A, gmm::scaled(x, T(-1)), b, r);
113  gmm::copy(r, v_tld);
114 
115  gmm::left_mult(M1, v_tld, y);
116  rho = gmm::vect_norm2(y);
117 
118  gmm::copy(r, w_tld);
119  gmm::transposed_right_mult(M1, w_tld, z);
120  xi = gmm::vect_norm2(z);
121 
122  while (! iter.finished_vect(r)) {
123 
124  if (rho == R(0) || xi == R(0)) {
125  if (iter.get_maxiter() == size_type(-1))
126  { GMM_ASSERT1(false, "QMR failed to converge"); }
127  else { GMM_WARNING1("QMR failed to converge"); return; }
128  }
129  gmm::copy(gmm::scaled(v_tld, T(R(1)/rho)), v);
130  gmm::scale(y, T(R(1)/rho));
131 
132  gmm::copy(gmm::scaled(w_tld, T(R(1)/xi)), w);
133  gmm::scale(z, T(R(1)/xi));
134 
135  delta = gmm::vect_sp(z, y);
136  if (delta == T(0)) {
137  if (iter.get_maxiter() == size_type(-1))
138  { GMM_ASSERT1(false, "QMR failed to converge"); }
139  else { GMM_WARNING1("QMR failed to converge"); return; }
140  }
141  gmm::right_mult(M1, y, y_tld);
142  gmm::transposed_left_mult(M1, z, z_tld);
143 
144  if (iter.first()) {
145  gmm::copy(y_tld, p);
146  gmm::copy(z_tld, q);
147  } else {
148  gmm::add(y_tld, gmm::scaled(p, -(T(xi * delta) / ep)), p);
149  gmm::add(z_tld, gmm::scaled(q, -(T(rho * delta) / ep)), q);
150  }
151 
152  gmm::mult(A, p, p_tld);
153 
154  ep = gmm::vect_sp(q, p_tld);
155  if (ep == T(0)) {
156  if (iter.get_maxiter() == size_type(-1))
157  { GMM_ASSERT1(false, "QMR failed to converge"); }
158  else { GMM_WARNING1("QMR failed to converge"); return; }
159  }
160  beta = ep / delta;
161  if (beta == T(0)) {
162  if (iter.get_maxiter() == size_type(-1))
163  { GMM_ASSERT1(false, "QMR failed to converge"); }
164  else { GMM_WARNING1("QMR failed to converge"); return; }
165  }
166  gmm::add(p_tld, gmm::scaled(v, -beta), v_tld);
167  gmm::left_mult(M1, v_tld, y);
168 
169  rho_1 = rho;
170  rho = gmm::vect_norm2(y);
171 
172  gmm::mult(gmm::transposed(A), q, w_tld);
173  gmm::add(w_tld, gmm::scaled(w, -beta), w_tld);
174  gmm::transposed_right_mult(M1, w_tld, z);
175 
176  xi = gmm::vect_norm2(z);
177 
178  gamma_1 = gamma;
179  theta_1 = theta;
180 
181  theta = rho / (gamma_1 * beta);
182  gamma = T(1) / gmm::sqrt(T(1) + gmm::sqr(theta));
183 
184  if (gamma == T(0)) {
185  if (iter.get_maxiter() == size_type(-1))
186  { GMM_ASSERT1(false, "QMR failed to converge"); }
187  else { GMM_WARNING1("QMR failed to converge"); return; }
188  }
189  eta = -eta * T(rho_1) * gmm::sqr(gamma) / (beta * gmm::sqr(gamma_1));
190 
191  if (iter.first()) {
192  gmm::copy(gmm::scaled(p, eta), d);
193  gmm::copy(gmm::scaled(p_tld, eta), s);
194  } else {
195  T tmp = gmm::sqr(theta_1 * gamma);
196  gmm::add(gmm::scaled(p, eta), gmm::scaled(d, tmp), d);
197  gmm::add(gmm::scaled(p_tld, eta), gmm::scaled(s, tmp), s);
198  }
199  gmm::add(d, x);
200  gmm::add(gmm::scaled(s, T(-1)), r);
201 
202  ++iter;
203  }
204  }
205 
206 
207 }
208 
209 #endif
210 
The Iteration object calculates whether the solution has reached the desired accuracy, or whether the maximum number of iterations has been reached.
Definition: gmm_iter.h:53
number_traits< typename linalg_traits< V >::value_type >::magnitude_type vect_norm2(const V &v)
Euclidean norm of a vector.
Definition: gmm_blas.h:557
size_t size_type
used as the common size type in the library
Definition: bgeot_poly.h:49
Include the base gmm files.
Iteration object.
void clear(L &l)
clear (fill with zeros) a vector or matrix.
Definition: gmm_blas.h:59
void qmr(const Matrix &A, Vector &x, const VectorB &b, const Precond1 &M1, iteration &iter)
Quasi-Minimal Residual.