37 #ifndef GMM_DENSE_MATRIX_FUNCTIONS_H    38 #define GMM_DENSE_MATRIX_FUNCTIONS_H    50     typedef typename number_traits<T>::magnitude_type R;
    51     bool singular = 
false;
    67     const size_type n = mat_nrows(A);
    68     for (
int j=0; j < int(n); j++) {
    69       typename dense_matrix<T>::iterator colj = A.begin() + j*n;
    70       if (gmm::abs(colj[j]) > tol)
    71         colj[j] = gmm::sqrt(colj[j]);
    75       for (
int i=j-1; i >= 0; i--) {
    76         typename dense_matrix<T>::const_iterator coli = A.begin() + i*n;
    77         T colji = colj[i] = safe_divide(colj[i], (coli[i] + colj[j]));
    78         for (
int k = 0; k < i; k++)
    79           colj[k] -= coli[k] * colji;
    84       GMM_WARNING1(
"Matrix is singular, may not have a square root");
    89   void sqrtm(
const dense_matrix<std::complex<T> >& A,
    90              dense_matrix<std::complex<T> >& SQRTMA)
    92     GMM_ASSERT1(gmm::mat_nrows(A) == gmm::mat_ncols(A),
    93                 "Matrix square root requires a square matrix");
    94     gmm::resize(SQRTMA, gmm::mat_nrows(A), gmm::mat_ncols(A));
    95     dense_matrix<std::complex<T> > S(A), Q(A), TMP(A);
    96     #if defined(GMM_USES_LAPACK)    99     GMM_ASSERT1(
false, 
"Please recompile with lapack and blas librairies "   100                 "to use sqrtm matrix function.");
   103     gmm::mult(Q, S, TMP);
   104     gmm::mult(TMP, gmm::transposed(Q), SQRTMA);
   107   template <
typename T>
   108   void sqrtm(
const dense_matrix<T>& A,
   109              dense_matrix<std::complex<T> >& SQRTMA)
   111     dense_matrix<std::complex<T> > cA(mat_nrows(A), mat_ncols(A));
   112     gmm::copy(A, gmm::real_part(cA));
   116   template <
typename T>
   117   void sqrtm(
const dense_matrix<T>& A, dense_matrix<T>& SQRTMA)
   119     dense_matrix<std::complex<T> > cA(mat_nrows(A), mat_ncols(A));
   120     gmm::copy(A, gmm::real_part(cA));
   121     dense_matrix<std::complex<T> > cSQRTMA(cA);
   123     gmm::resize(SQRTMA, gmm::mat_nrows(A), gmm::mat_ncols(A));
   124     gmm::copy(gmm::real_part(cSQRTMA), SQRTMA);
   136   template <
typename T>
   139     typedef typename number_traits<T>::magnitude_type R;
   141     size_type n = gmm::mat_nrows(S);
   142     GMM_ASSERT1(n == gmm::mat_ncols(S),
   143                 "Matrix logarithm is not defined for non-square matrices");
   144     for (size_type i=0; i < n-1; ++i)
   145       if (gmm::abs(S(i+1,i)) > default_tol(T())) {
   146         GMM_ASSERT1(
false, 
"An upper triangular matrix is expected");
   149     for (size_type i=0; i < n-1; ++i)
   150       if (gmm::real(S(i,i)) <= -default_tol(R()) &&
   151           gmm::abs(gmm::imag(S(i,i))) <= default_tol(R())) {
   152         GMM_ASSERT1(
false, 
"Principal matrix logarithm is not defined "   153                            "for matrices with negative eigenvalues");
   158     R theta[] = { R(0),R(0),R(1.61e-2),R(5.38e-2),R(1.13e-1),R(1.86e-1),R(2.6429608311114350e-1) };
   161     size_type p(0), m(6), opt_iters(100);
   162     for (size_type k=0; k < opt_iters; ++k, scaling *= R(2)) {
   163       dense_matrix<T> auxS(S);
   164       for (size_type i = 0; i < n; ++i) auxS(i,i) -= R(1);
   166       if (tau <= theta[6]) {
   168         size_type j1(6), j2(6);
   169         for (size_type j=0; j < 6; ++j)
   170           if (tau <= theta[j]) { j1 = j; 
break; }
   171         for (size_type j=0; j < j1; ++j)
   172           if (tau <= 2*theta[j]) { j2 = j; 
break; }
   173         if (j1 - j2 <= 1 || p == 2) { m = j1; 
break; }
   176       if (k == opt_iters-1)
   177         GMM_WARNING1 (
"Maximum number of square roots exceeded; "   178                       "the calculated matrix logarithm may still be accurate");
   181     for (size_type i = 0; i < n; ++i) S(i,i) -= R(1);
   185       std::vector<R> nodes, wts;
   188         R nodes_[] = { R(0.5) };
   190         nodes.assign(nodes_, nodes_+m+1);
   191         wts.assign(wts_, wts_+m+1);
   194         R nodes_[] = { R(0.211324865405187),R(0.788675134594813) };
   195         R wts_[] = { R(0.5),R(0.5) };
   196         nodes.assign(nodes_, nodes_+m+1);
   197         wts.assign(wts_, wts_+m+1);
   200         R nodes_[] = { R(0.112701665379258),R(0.500000000000000),R(0.887298334620742) };
   201         R wts_[] = { R(0.277777777777778),R(0.444444444444444),R(0.277777777777778) };
   202         nodes.assign(nodes_, nodes_+m+1);
   203         wts.assign(wts_, wts_+m+1);
   206         R nodes_[] = { R(0.0694318442029737),R(0.3300094782075718),R(0.6699905217924281),R(0.9305681557970263) };
   207         R wts_[] = { R(0.173927422568727),R(0.326072577431273),R(0.326072577431273),R(0.173927422568727) };
   208         nodes.assign(nodes_, nodes_+m+1);
   209         wts.assign(wts_, wts_+m+1);
   212         R nodes_[] = { R(0.0469100770306681),R(0.2307653449471584),R(0.5000000000000000),R(0.7692346550528415),R(0.9530899229693319) };
   213         R wts_[] = { R(0.118463442528095),R(0.239314335249683),R(0.284444444444444),R(0.239314335249683),R(0.118463442528094) };
   214         nodes.assign(nodes_, nodes_+m+1);
   215         wts.assign(wts_, wts_+m+1);
   218         R nodes_[] = { R(0.0337652428984240),R(0.1693953067668678),R(0.3806904069584015),R(0.6193095930415985),R(0.8306046932331322),R(0.9662347571015761) };
   219         R wts_[] = { R(0.0856622461895853),R(0.1803807865240693),R(0.2339569672863452),R(0.2339569672863459),R(0.1803807865240693),R(0.0856622461895852) };
   220         nodes.assign(nodes_, nodes_+m+1);
   221         wts.assign(wts_, wts_+m+1);
   224         R nodes_[] = { R(0.0254460438286208),R(0.1292344072003028),R(0.2970774243113015),R(0.4999999999999999),R(0.7029225756886985),R(0.8707655927996973),R(0.9745539561713792) };
   225         R wts_[] = { R(0.0647424830844348),R(0.1398526957446384),R(0.1909150252525594),R(0.2089795918367343),R(0.1909150252525595),R(0.1398526957446383),R(0.0647424830844349) };
   226         nodes.assign(nodes_, nodes_+m+1);
   227         wts.assign(wts_, wts_+m+1);
   231       dense_matrix<T> auxS1(S), auxS2(S);
   232       std::vector<T> auxvec(n);
   234       for (size_type j=0; j <= m; ++j) {
   235         gmm::copy(gmm::scaled(auxS1, nodes[j]), auxS2);
   236         gmm::add(gmm::identity_matrix(), auxS2);
   238         for (size_type i=0; i < n; ++i) {
   239           gmm::copy(gmm::mat_row(auxS1, i), auxvec);
   240           gmm::lower_tri_solve(gmm::transposed(auxS2), auxvec, 
false);
   241           gmm::add(gmm::scaled(auxvec, wts[j]), gmm::mat_row(S, i));
   245     gmm::scale(S, scaling);
   251   template <
typename T>
   252   void logm(
const dense_matrix<T>& A, dense_matrix<T>& LOGMA)
   254     typedef typename number_traits<T>::magnitude_type R;
   255     size_type n = gmm::mat_nrows(A);
   256     GMM_ASSERT1(n == gmm::mat_ncols(A),
   257                 "Matrix logarithm is not defined for non-square matrices");
   258     dense_matrix<T> S(A), Q(A);
   259     #if defined(GMM_USES_LAPACK)   262     GMM_ASSERT1(
false, 
"Please recompile with lapack and blas librairies "   263                 "to use logm matrix function.");
   266     bool convert_to_complex(
false);
   267     if (!is_complex(T()))
   268       for (size_type i=0; i < n-1; ++i)
   269         if (gmm::abs(S(i+1,i)) > default_tol(T())) {
   270           convert_to_complex = 
true;
   275     if (convert_to_complex) {
   276       dense_matrix<std::complex<R> > cS(n,n), cQ(n,n), auxmat(n,n);
   277       gmm::copy(gmm::real_part(S), gmm::real_part(cS));
   278       gmm::copy(gmm::real_part(Q), gmm::real_part(cQ));
   279       block2x2_reduction(cS, cQ, default_tol(R())*R(3));
   280       for (size_type j=0; j < n-1; ++j)
   281         for (size_type i=j+1; i < n; ++i)
   284       gmm::mult(cQ, cS, auxmat);
   285       gmm::mult(auxmat, gmm::transposed(cQ), cS);
   287       gmm::copy(gmm::real_part(cS), LOGMA);
   291       dense_matrix<T> auxmat(n,n);
   293       gmm::mult(Q, S, auxmat);
   294       gmm::mult(auxmat, gmm::transposed(Q), LOGMA);
 void logm(const dense_matrix< T > &A, dense_matrix< T > &LOGMA)
Matrix logarithm (from GNU/Octave) 
void logm_utri_inplace(dense_matrix< T > &S)
Matrix logarithm for upper triangular matrices (from GNU/Octave) 
void sqrtm_utri_inplace(dense_matrix< T > &A)
Matrix square root for upper triangular matrices (from GNU Octave). 
number_traits< typename linalg_traits< M >::value_type >::magnitude_type mat_norm1(const M &m)
*/ 
void clear(L &l)
clear (fill with zeros) a vector or matrix. 
void resize(M &v, size_type m, size_type n)
*/