Synopsis
c=gf_colormap(name)
Description :
return a colormap, or change the current colormap. name can be: ‘tripod’, ‘chouette’, ‘froid’, ‘tank’ or ‘earth’.
Synopsis
[hsurf, hcontour, hquiver, hmesh, hdefmesh]=gf_plot(mesh_fem mf, U, ...)
The options are specified as pairs of "option name"/"option value"
'zplot',{'off'|'on'} : values of ``U`` are mapped on the $z$-axis (only possible when qdim=1, mdim=2).
'norm', {'off'|'on'} : if qdim >= 2, color-plot the norm of the field
'dir',[] : or the scalar product of the field with 'dir' (can be a vector, or 'x', 'y' etc..)
'refine',8 : nb of refinments for curved edges and surface plots
'interpolated',{'off'|'on'}: if triangular patch are interpolated
'pcolor',{'on'|'off'} : if the field is scalar, a color plot of its values is plotted
'quiver',{'on'|'off'} : if the field is vector, represent arrows
'quiver_density',50 : density of arrows in quiver plot
'quiver_scale',1 : scaling of arrows (0=>no scaling)
'mesh',{'off'|'on'} : show the mesh ?
'meshopts',{cell(0)} : cell array of options passed to gf_plot_slice for the mesh
'deformed_mesh', {'off'|'on'} : shows the deformed mesh (only when qdim == mdim)
'deformed_meshopts', {cell(0)}: cell array of options passed to gf_plot_slice for the deformed mesh
'deformation',[] : plots on the deformed object (only when qdim == mdim)
'deformation_mf',[] : plots on the deformed object (only when qdim == mdim)
'deformation_scale','10%' : indicate the amplitude of the deformation. Can be a percentage of the mesh width if given as a string, or an absolute value if given as a number
'cvlst',[] : list of convexes to plot (empty=>all convexes)
'title',[] : set the title
'contour',[] : list of contour values
'disp_options', {'off'|'on'} : shows the option or not.
Description :
The function expects U to be a row vector. If U is a scalar field, then gf_plot(mf,U) will fill the mesh with colors representing the values of U. If U is a vector field, then the default behavior of gf_plot is to draw vectors representing the values of U.
On output, this function returns the handles to the various graphical objects created: hmesh is the handles to the mesh lines, hbound is the handles to the edges of the boundaries, hfill is the handle of the patch objects of faces, hvert (resp hconv, hdof) is the handles of the vertices (resp. convexes, dof) labels.
For example, plotting a scalar field on the border of a 3D mesh can be done with
% load the 'strange.mesh_fem' (found in the getfem_matlab/tests directory) mf=gf_mesh_fem('load', 'strange.mesh_fem') U=rand(1, gf_mesh_fem_get(mf, 'nbdof')); # random field that will be drawn gf_plot(mf, U, 'refine', 25, 'cvlst', gf_mesh_get(mf,'outer faces'), 'mesh','on');
Synopsis
gf_plot_1D(mesh_fem mf, U, ...)
Available options are specified as pairs of "option name"/"option value"
'style', 'bo-' : line style and dof marker style (same syntax as in the Scilab command 'plot');
'color', '' : override line color (by a given color name);
'dof_color', '' : override color of dof markers;
'width', 2 : line width.
Description :
This function plots a 1D finite element field.
Synopsis
gf_plot_mesh(m, ...)
'vertices', {'off'|'on'} : displays also vertices numbers.
'convexes', {'off'|'on'} : displays also convexes numbers.
'dof',{'off'|'on'} : displays also finite element nodes. In that case, ``m`` should be a ``mesh_fem`` identifier.
'regions',BLST : displays the boundaries listed in BLST.
'cvlst',CVLST : display only the listed convexes. If CVLST has two rows, display only the faces listed in the second row.
'edges', {'on' | 'off'} : display edges ?
'faces', {'off'|'on'} : fills each 2D-face of the mesh
'curved', {'off'|'on'} : displays curved edges
'refine',N : refine curved edges and filled faces N times
'deformation', Udef : optionnal deformation applied to the mesh (M must be a mesh_fem object)
'edges_color',[.6 .6 1] : RGB values for the color of edges
'edges_width',1 : width of edges
'faces_color',[.75 .75 .75]): RGB values for the color of faces
'quality',{ 'off' | 'on' } : Display the quality of the mesh.
Description :
This function is used to display a mesh.
Example
% the mesh is in the tests directory of the distribution m=gf_mesh('import','gid','donut_with_quadratic_tetra_314_elements.msh'); gf_plot_mesh(m,'refine',15,'cvlst',gf_mesh_get(m,'outer faces'),'faces','on',\ldots, 'faces_color',[1. .9 .2],'curved','on','edges_width',2); camlight % turn on the light!
Synopsis
gf_plot_slice(sl, ...)
The options are specified as pairs of "option name"/"option value"
data [] : data to be plotted (one value per slice node)
convex_data [] : data to be plotted (one value per mesh convex)
mesh, ['auto'] : 'on' -> show the mesh (faces of edges), 'off' -> ignore mesh
mesh_edges, ['on'] : show mesh edges ?
mesh_edges_color, [0.60 0.60 1] : color of mesh edges
mesh_edges_width, [0.70] : width of mesh edges
mesh_slice_edges, ['on'] : show edges of the slice ?
mesh_slice_edges_color, [0.70 0 0] : color of slice edges
mesh_slice_edges_width, [0.50] : width of slice edges
mesh_faces, ['off'] : 'on' -> fill mesh faces (otherwise they are transparent)
mesh_faces_color, [0.75 0.75 0.75]
pcolor, ['on'] : if the field is scalar, a color plot of its values is plotted
quiver, ['on'] : if the field is vector, represent arrows
quiver_density, 50 : density of arrows in quiver plot
quiver_scale, 1 : density of arrows in quiver plot
tube, ['on'] : use tube plot for 'filar' (1D) parts of the slice
tube_color, ['red'] : color of tubes (ignored if 'data' is not empty and 'pcolor' is on)
tube_radius, ['0.5%'] : tube radius; you can use a constant, or a percentage (of the mesh size) or a vector of nodal values
showoptions, ['on'] : display the list of options
the 'data' and 'convex_data' are mutually exclusive.
Description :
This function can be used to plot mesh slices. It is also used by the gf_plot_mesh and gf_plot functions.
Example : consider that you have a 3D mesh_fem mf and a vector field U defined on this mesh_fem, solution of the Stokes problem in a tank (see the demo demo_stokes_3D_tank_draw.m in the tests directory).
figure; % slice the mesh with two half spaces, and take the boundary of the resulting quarter-cylinder sl=gf_slice(\{'boundary',\{'intersection',\{'planar',+1,[0;0;0],[0;1;0]\},\ldots \{'planar',+1,[0;0;0],[1;0;0]\}\}\},m,6); Usl=gf_compute(pde.mf_u,U,'interpolate on', sl); % interpolate the solution on the slice % show the norm of the displacement on this slice gf_plot_slice(sl,'mesh','on','data',sqrt(sum(Usl.^2,1)),'mesh_slice_edges','off'); % another slice: now we take the lower part of the mesh sl=gf_slice(\{'boundary',\{'intersection',\{'planar',+1,[0;0;6],[0;0;-1]\},\ldots \{'planar',+1,[0;0;0],[0;1;0]\}\}\},m,6); Usl=gf_compute(pde.mf_u,U,'interpolate on', sl); hold on; gf_plot_slice(sl,'mesh','on','data',sqrt(sum(Usl.^2,1)),'mesh_slice_edges','off'); % this slice contains the transparent mesh faces displayed on the picture sl2=gf_slice(\{'boundary',\{'planar',+1,[0;0;0],[0;1;0]\}\},\ldots m,6,setdiff(all_faces',TOPfaces','rows')'); gf_plot_slice(sl2,'mesh_faces','off','mesh','on','pcolor','off'); % last step is to plot the streamlines hh=[1 5 9 12.5 16 19.5]; % vertical position of the different starting points of the streamlines H=[zeros(2,numel(hh));hh]; % compute the streamlines tsl=gf_slice('streamlines',pde.mf_u,U,H); Utsl=gf_compute(pde.mf_u,U,'interpolate on', tsl); % render them with "tube plot" [a,h]=gf_plot_slice(tsl,'mesh','off','tube_radius',.2,'tube_color','white'); hold off; % use a nice colormap caxis([0 .7]); c=[0 0 1; 0 .5 1; 0 1 .5; 0 1 0; .5 1 0; 1 .5 0; 1 .4 0; 1 0 0; 1 .2 0; 1 .4 0; 1 .6 0; 1 .8 0]; colormap(c);