
HIGH PRECISION ARITHMETIC LIBRARY

PROGRAMMER’S MANUAL

Copyright (C) 2005 - 2010 Ivano Primi ¡ivprimi (a) libero (dot) it¿

Last Update: 2010-07-21

1

Contents

1 Summary 3

2 License 3

3 General Technical Comments 4

4 General overview 4

5 Dealing with runtime errors 7

6 Compiling and linking 9

7 Real arithmetic 12

7.1 Real constants . 13
7.2 Extended Precision Floating Point Arithmetic 14
7.3 Extended Precision Math Library 26
7.4 Applications of Extended Precision Arithmetic 29

8 Complex Arithmetic 30

8.1 Complex constants . 31
8.2 Extended Precision Complex Arithmetic 31
8.3 Extended Precision Complex Math Library 45

9 The C++ interface 49

10 Compiling and linking with the C++ wrapper 51

11 The xreal class 52

12 The xcomplex class 60

13 Acknowledgments 71

14 GNU Free Documentation License 71

2

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later ver-
sion published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section ”GNU Free Documentation License”.

1 Summary

The High Precision Arithmetic (HPA) library implements a high precision float-
ing point arithmetic together with a comprehensive set of support functions.
The general areas covered by these functions include:

• Extended Precision Arithmetic,

• Extended Precision Math Library,

• Applications of High Precision Computation.

The math library support includes evaluation of trigonometric, inverse trigono-
metric, hyperbolic, logarithm, and exponential functions at the same precision
as the floating point math itself. The HPA library also supports high precision
complex arithmetic and includes an Extended Precision Complex Math Library.

2 License

The HPA library has been derived from a branch of the source code of the CC-
Math library, which is a work by Daniel A. Atkinson. Since Daniel A. Atkinson
released the code of the CCMath Library under GNU Lesser General Public Li-
cense, it has been possible for Ivano Primi to modify, complete and redistribute
this source code under the same terms.

The HPA (abbreviation of High Precision Arithmetic) Library is then copy-
righted by Ivano Primi <ivprimi (at) libero (dot) it> and Daniel A. Atkinson.
As for the CCMath Library, its source code is released under the terms of the
GNU Lesser General Public License, as published by the Free Software Foun-
dation; either version 2.1 of the License, or (at your option) any later version.

The HPA library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with this library; if not, see http://www.gnu.org/licenses/. Write to the
email address

<ivprimi (at) libero (dot) it> .

3

http://www.gnu.org/licenses/

if you want to ask for additional information, report bugs or submit patches.

3 General Technical Comments

The functions forming the HPA library are all implemented in a portable fash-
ion in the C language. The IEEE 754 standard for floating point hardware
and software is assumed in the PC/Unix version of this library. The normal
configuration of the library employs a floating point mantissa of 112 bits, which
corresponds approximately to a 32 decimal digit precision. Higher precision is
available as an option. An extended floating point number is represented as a
combination of the following elements:

• sign bit(s): 0 -> positive, 1 -> negative ;

• exponent(e): 15-bit biased integer (bias=16383) ;

• mantissa(m): 7 words of 16 bit length with the leading 1 explicitly repre-
sented .

The range of representable numbers is then given by

2^16384 > x > 2^[-16383]

or

1.19*10^4932 > x > 1.68*10^-[4932].

Special values of the exponent are:

• all ones -> infinity (floating point overflow)

• all zeros -> number = zero.

Underflow in operations is handled by a flush to zero. Thus, a number with
the exponent zero and nonzero mantissa is invalid (not-a-number). From the
point of view of the HPA library, a complex number is simply a structure formed
by two extended floating point numbers, representing respectively the real and
the imaginary part of the complex number.

4 General overview

The HPA library is composed by two modules. The first one is formed by the
functions for real arithmetic, i.e. by the functions operating on real arguments.
The second one is formed by all functions which manipulate complex arguments.
The lists of the functions which compose the HPA library are in the header

4

files xpre.h and cxpre.h. xpre.h is the header file for real arithmetic, it
contains the definition of an extended precision real number (struct xpr), and
the declarations of the functions provided by the library to manipulate real
arguments. The numeric type struct xpr can be used to declare and define
real variables, just as in

struct xpr q;

The size of a variable of type struct xpr is given by (2 x XDIM + 2) bytes,
where XDIM is a constant defined in the file xpre.h (namely, in the file hpaconf.h
which is included by xpre.h).

cxpre.h is the header file for complex arithmetic, it contains the definition
of an extended precision complex number (struct cxpr), and the declarations
of the functions supplied by the library to manipulate complex arguments. The
numeric type struct cxpr can be used to declare and define complex variables,
just as in

struct cxpr q;

The size of a variable of type struct cxpr is given by (4 x XDIM + 4) bytes,
where XDIM is the same constant as above.

Before declaring or defining variables of type struct xpr and before using
anyone of the functions declared in the header file xpre.h, you have to insert
the line

#include <xpre.h>

in your source code file. Similarly, before declaring or defining variables of type
struct cxpr and before using anyone of the functions declared in the header
file cxpre.h, you have to add the line

#include <cxpre.h>

to your source code file.
After including in your source code the header file xpre.h or, if you also

need functions handling complex arguments, the header file cxpre.h, you can
start to use the HPA library by defining all variables and calling all functions
which are necessary for your computations. In fact, the HPA library DOES
NOT REQUIRE that a special initialization routine must be called before any
other function of the library. Moreover, variables of type struct xpr or struct
cxpr DO NOT NEED to be initialized before they can be used.

When the HPA library was written, a sort of namespace was created for all
the identifiers used by the library. This has been achieved by sticking to the
following rules:

1. Identifiers of functions and types are lowercase; the unique exception to
this rule is the function xisNaN(). Their names start by x, if they are
defined in xpre.h, or by cx, if they are defined in cxpre.h, with the only
exception of a few functions, which have a name ending by tox or tocx:

5

strtox(), strtocx(), atox(), atocx(),

dbltox(), dctocx(), flttox(), fctocx(),

inttox(), ictocx(), uinttox(), uctocx();

2. The names of the macros defined by the HPA library are all uppercase
and start by X or CX;

3. The names of the global constants defined by the HPA library start by
x (real constants) or by cx (complex constants) and the letter which im-
mediately follows this prefix is always uppercase, just as in xZero, xPi,
cxOne, cxIU (IU stays for imaginary unit);

4. The unique global variable defined by the HPA library is an error indicator
of int type, whose name is xErrNo.

This is a trivial program showing the use of the HPA library:

#include <stdio.h>

#include <xpre.h>

int main (void)

{

struct xpr s;

int i, n;

do

{

printf ("Give me a number, n = ? \t");

scanf ("%d", &n);

s = xZero;

for (i = 0; i <= n; i++)

s = xadd (s, xpr2(xOne, i), 0);

printf ("The sum 2^0 + 2^1 + ... + 2^n is equal to\n");

xprxpr (s, 30);

putchar (’\n’);

} while (n > 0);

return 0;

}

This program takes in input from the user an integer value n and prints on the
screen the sum of the first n powers of 2. In the program we use the functions
xpr2() and xprxpr(). xpr2(x, n), where n is an integer, returns x* 2^n,

6

while xprxpr(x, m), where m is an integer, prints on the screen the number x

with m decimal digits after the decimal point (.) .
The HPA library is NOT thread safe. Some of the HPA internal data could

get corrupted if multiple HPA functions are active at the same time. This is due
to the fact that some functions of the HPA library use static variables to store
information. The user should then guarantee that only one thread is performing
HPA functions. This can usually be achieved by a call to the operating system
to obtain a semaphore, mutex, or critical code section; the operating system will
then guarantee that only one HPA thread will be active at a time.

5 Dealing with runtime errors

During the use of the HPA library it could happen to pass to a function an illegal
argument, namely, an argument whose value is not compatible with the math-
ematical definition of the function. For example, this occurs when a negative
value is passed to the function xsqrt(). This function computes and returns
the (real) square root of its argument, but the square root of a number is defined
only for non-negative numbers. So, if x is less than zero, xsqrt(x) can not be
computed and a mathematical error occurs, a so called domain error. Another
type of mathematical error occurs when the second argument of the division
function (xdiv()) is zero: since it is impossible to divide a number by zero,
a division by zero error occurs. What exactly happens when a mathematical
error is detected during the execution of a function depends on the way the HPA
library was compiled when it was installed on the system where you are work-
ing. If, during the installation process, the default setting was left unchanged,
then, whenever a runtime error occurs within a function of the HPA library, this
function will set an external error indicator to a suitable value. This value can
be looked up later to know what exactly went wrong. The name of the variable
of type int used as error indicator is xErrNo. Before any function of the HPA
library is executed, the value of xErrNo is 0. If a mathematical error occurs
when the first HPA function is called, then xErrNo is set to a suitable positive
value, which indicates the exact type of the error. After, xErrNo is modified if
and only if, during the execution of an HPA function, another mathematical er-
ror occurs. xErrNo is never reset to 0 by the HPA library; therefore, in order to
detect possible errors, one has to set xErrNo to zero before calling any function
of the HPA library. An example of error handling is given by:

#include <stdio.h>

#include <xpre.h>

extern int xErrNo;

int main (void)

7

{

int n;

struct xpr sr;

do

{

printf ("Give me a number, n = ? \t");

scanf ("%d", &n);

xErrNo = 0;

sr = xsqrt (inttox (n));

if (xErrNo == 0)

{

printf ("The square root of %d is\n", n);

xprxpr (sr, 30);

putchar (’\n’);

}

else

fprintf (stderr, "*** Error: Out of domain\n");

} while (n != 0);

return 0;

}

In this program xErrNo is reset to zero, at each execution of the do {...}
while(); loop, before the call of the xsqrt() function.

However, the HPA library could be compiled to deal differently with runtime
errors. For example, in case of error a suitable message could be printed on
stderr and the library could also cause the termination of the calling program via
exit(1). Finally, the library could also be compiled to ignore any mathematical
error (sigh !). To know how the routines of the HPA library deal with errors
is sufficient to examine the file hpaconf.h (which is automatically included by
xpre.h and cxpre.h). This file defines the macro:

• XERR DFL to mean that, in case of error, xErrNo is suitably set;

• XERR WARN to mean that, in case of error, a suitable message is printed on
stderr;

• XERR EXIT to mean that, in case of error, the calling program is terminated
through a call to exit(1) after printing a message on stderr;

• XERR IGN to mean that, in case of error, nothing is done or signaled.

When the macro XERR DFL is defined, the header file xpre.h also defines the
macros XENONE, XEDIV, XEDOM, XEBADEXP, XFPOFLOW and XNERR:

#define XENONE 0 /* No error */

#define XEDIV 1 /* Division by zero */

8

#define XEDOM 2 /* Out of domain */

#define XEBADEXP 3 /* Bad exponent */

#define XFPOFLOW 4 /* Floating point overflow */

#define XNERR 4 /* Number of the non-null error codes */

These macros can be used, together with xErrNo, to recover the exact type of
the error occurred during the execution of a routine of the HPA library.

6 Compiling and linking

Together with the HPA library is installed a little and simple program called
hpaconf. You can use it to quickly compile and build your programs. If PREFIX
is the root directory chosen to install the HPA library (the default value for
PREFIX is /usr/local), then hpaconf should be installed inside PREFIX/bin.
You can know where hpaconf is installed by launching the command

which hpaconf

in your console or terminal. In the following it is assumed that the directory
PREFIX/bin is included in your PATH environment variable (This is surely
true if the command which was able to find hpaconf).

hpaconf recognizes four options:

-v to return the version of HPA installed on your system,

-c to return the flags needed to compile with HPA,

-l to return the flags needed to link against HPA,

-n to print a newline at the end of the output.

The option -v cannot be used together with the options -c and -l, but it
may be used together with -n:

hpaconf -v

prints on the standard output (console) the version of HPA installed on your
system,

hpaconf -v -n

or

hpaconf -n -v

9

(order does not matter) behaves exactly the same but also prints a newline to
force the following output to be written on the next line.

The options -c and -l cannot be used together with -v, but they can be
used both at the same time and can also be accompanied by the option -n. Of
course, order does not matter.

hpaconf -c

prints on the standard output the flags needed to compile with HPA,

hpaconf -l

prints on the standard output the flags needed to link against HPA,

hpaconf -c -l

or

hpaconf -l -c

prints both the flags to compile with HPA and the flags to link against HPA.
If the option -n is added, then the information printed is followed by a

newline. An example will show the usefulness of hpaconf. To compile the
source file example.c you should tell the compiler where looking for the header
files of HPA and for the library itself; to do this it is sufficient to specify the
related paths through the options -I and -L, at least if you are using GCC/G++
as C/C++ compiler. But in this way you are constrained to remember the path
where HPA was installed, and this is quite uncomfortable. With hpaconf you
can simply use the command

cc -c $(hpaconf -c) example.c

or

cc -c ‘hpaconf -c‘ example.c

to compile the file example.c and obtain the object file example.o. The pre-
vious one is the right form of the command for a shell sh compatible, like ash,
bash or ksh. If you are using another shell, probably the right form to obtain
the expansion of the command hpaconf -c will be another one (see the manual
of your preferred shell for this). On GNU/Linux, bash is the default shell for
all users. If this is not true for your machine, ask your system administrator.
Once you have obtained the object file example.o, you may do the linkage by
using the command (for a shell sh-compatible):

cc example.o $(hpaconf -l) -o example

or

10

cc example.o ‘hpaconf -l‘ -o example

If you want, you may also compile and build at the same time by using

cc example.c $(hpaconf -c -l) -o example

or

cc example.c ‘hpaconf -c -l‘ -o example

which will compile example.c and build the program example. Naturally, com-
piling and building at the same time is only possible when the source code of
your program is entirely contained in one file.

The hpaconf program may also tell you which options were used to compile
the HPA library for the system where you are working. This information is
displayed, together with hints about usage, when hpaconf is called with no
options. This is the output obtained on my personal machine:

ivano@darkstar[~]$ hpaconf

*** Usage: hpaconf [-v] [-n] or

*** hpaconf [-c] [-l] [-n]

*** Meaning of the options:

-v returns the current version of the HPA library,

-c returns the flags to compile with HPA library,

-l returns the flags to link against HPA library,

-n adds a newline at the end of the output.

----- Features of the HPA library (including build options) -----

Size of an extended precision floating point value (in bytes): 16

Number of bits available for the sign: 1

Number of bits available for the exponent: 15

Number of bits available for the mantissa: 112

Decimal digits of accuracy: ~33

Dynamic range supported: 2^16384 > x > 2^(-16383) i.e.

1.19*10^4932 > x > 1.68*10^-(4932)

In case of floating point error

the global (extern) variable ’xErrNo’ is suitably set

The first value shown after the header Features of the HPA library is the
size of a variable of struct xpr type. When I installed the HPA library on my
machine, I chose to compile it by setting XDIM to 7. Then a variable of type
struct xpr turns out to have a size of 16 = 2 * 7 + 2 bytes. Since XDIM could
have been set to another value on the system where you are working (XDIM
could also have the values 11, 15, 19, 23, 27 and 31), the first value shown
by hpaconf could differ on your machine. The next 2 values (bits available

11

for sign and exponent) are the same for all installations. The decimal digits of
accuracy depend on the value of XDIM, namely, they increase together with XDIM

till to a maximum of 149 when XDIM is 31. As you can see, the value of XDIM

determines the accuracy provided by the mathematical functions of the HPA
library. Even if a larger value for XDIM implies a greater accuracy, together with
XDIM increase the memory and the time requested by the routines of the HPA
library to perform their computations.

The dynamic range supported by the HPA library is always the same, or
almost. The HPA library can be compiled to deal differently with the error
conditions (see previous section). In the last line of the output of hpaconf, you
can find information about the way runtime errors are handled. This informa-
tion can also be retrieved from the file hpaconf.h, as explained in the previous
section.

The file hpaconf.h also defines the macro HPA VERSION, a string contain-
ing the version number of the release of the HPA library currently in use.

7 Real arithmetic

The first module of the HPA library is made of functions for Extended Precision
Floating Point Arithmetic, functions of the Extended Precision Math Library,
and of applications of the Extended Precision Arithmetic. They are all declared
in the file xpre.h together with some macros and numerical constants. The
header file xpre.h also defines the structure xoutflags:

struct xoutflags

{

short fmt, notat, sf, mfwd, lim;

signed char padding, ldel, rdel;

};

A structure of such kind is used by the output functions xfout(), xout() and
xsout() to know how they have to print numbers.

The field notat refers to the notation: it can be equal to XOUT SCIENTIFIC

(scientific notation) or to XOUT FIXED (floating point notation).
Both XOUT SCIENTIFIC and XOUT FIXED are macros defined inside xpre.h.
The field sf refers to the sign: if sf is not zero, then every non-negative

number is printed with a plus sign (+) ahead.
The field mfwd indicates the minimum field width to use in printing numbers.

When mfwd is zero no minimum field width is used. When mfwd is negative,
then the actual minimum field width is given by -mfwd and the printed number
is left adjusted on the field boundary (default is right justification).

lim has a different meaning depending on the notation in use. Together with
the scientific notation, lim gives the number of decimal digits to the right of
the decimal point (lim+1 = total digits displayed). Otherwise, lim + 1 is the

12

number of significant digits displayed. When lim is negative, the default value
(6) is used.

Finally, padding defines the padding character to use together with a non-
zero minimum field width. If padding is negative, then the default padding
char (i.e. the blank character) is used.

The fields fmt, ldel and rdel are ignored by the functions xfout(), xout()
and xsout(). They are only used by the functions cxfout(), cxout() and
cxsout() to format and print complex numbers.

fmt specifies the format to use in printing complex numbers. The possible
values for fmt are XFMT STD, XFMT RAW and XFMT ALT (these macros are declared
inside cxpre.h). If fmt == XFMT STD, then the complex number (a, b) is
printed using the notation a+bi or a-bi (depending on the sign of b). Of
course, a and b are printed according to the rules exposed above. If fmt ==

XFMT RAW, then (a, b) is printed in the form

a<two blank spaces>b

just like in

1.0 2.5

assuming that a = 1.0 and b = 2.5. Finally, if fmt == XFMT ALT, then (a,b)

is printed as

<left delimiter>a, b<right delimiter>

where <left delimiter> and <right delimiter> are the characters given by the
fields ldel and rdel respectively. If ldel < 0 or rdel < 0, then (or) is
used as default <left delimiter> / <right delimiter>.

Care that none of the functions xfout(), xout(), xsout(), cxfout(), cxout()
or cxsout() adds a newline at the end of the printed number.

7.1 Real constants

The header file xpre.h defines several constants. Between the constants defined
in xpre.h there are those ones corresponding to particular mathematical values:

extern const struct xpr xZero, xOne, xTwo, xTen;

extern const struct xpr xPinf, xMinf, xNaN;

extern const struct xpr xPi, xPi2, xPi4, xEe, xSqrt2;

extern const struct xpr xLn2, xLn10, xLog2_e, xLog2_10,

xLog10_e;

xZero (= 0), xOne (= 1), xTwo (= 2)and xTen (= 10) do not need a comment.
xPi, xPi2, xPi4, xEe, xSqrt2, xLn2, xLn10, xLog2 e, xLog2 10, xLog10 e repre-
sent, respectively, the values PI (= 3.14159...), PI/2, PI/4, e (= 2.7182818...),

13

square root of 2 (= 1.4142135...), natural logarithm of 2 and 10, base-2 logarithm
of e and 10, 10-base logarithm of e.

xPinf, xMinf and xNan are special values: xPinf represents the value +oo

(plus infinity), xMinf the value -oo (minus infinity) and xNaN is used to mean
an invalid number (NaN stays for Not a Number). xPinf and xMinf are usually
returned by a function to signal a floating point overflow, positive and negative
respectively, while xNaN is returned by the functions converting ASCII strings
to floating point numbers to indicate that the string given to them as argument
does not contain any valid number. xPinf, xMinf and xNaN should never be
used as arguments for functions, since this has unpredictable results.

7.2 Extended Precision Floating Point Arithmetic

The arithmetic functions support the basic computations and input/output op-
erations for extended precision floating point mathematics. Some of the oper-
ations supply capabilities designed to enhance the computational efficiency of
this arithmetic (e.g., xpwr). What follows is their complete list including the
synopsis for each of them.

xadd - Add or subtract two extended precision numbers.

struct xpr xadd(struct xpr s,struct xpr t,int f)

• s = structure containing first number;

• t = structure containing second number;

• f = control flag: if 0, then s and t are added, else they are subtracted
(s-t).

The value returned by xadd() is the result of the addition/subtraction.
xadd() can return xPinf or xMinf to signal a floating point overflow.

xmul - Multiply two extended precision numbers.

struct xpr xmul(struct xpr s,struct xpr t)

• s = structure containing first number;

• t = structure containing second number.

The value returned by xmul() is the product s*t. It can be xPinf or xMinf
in case of overflow.

xdiv - Divide one extended precision number by a second.

14

struct xpr xdiv(struct xpr s,struct xpr t)

• s = structure containing numerator;

• t = structure containing denominator.

The value returned by xdiv() is the quotient s/t.

xneg - Change sign (unary minus).

struct xpr xneg(struct xpr s)

• s = structure containing input number.

The value returned by xneg() is a structure containing its argument with
the changed sign.

xabs - Compute absolute value.

struct xpr xabs(struct xpr s)

• s = structure containing input number.

The value returned by xabs() is a structure containing the absolute value
of its argument.

x exp - Extract the binary exponent.

int x_exp(const struct xpr *p)

• p = pointer to an extended precision number.

The value returned by x exp() is the binary exponent (power of 2) of the
number pointed to by p.

x neg - Test the sign of an extended precision number.

int x_neg(const struct xpr *p)

• p = pointer to an extended precision number.

The value returned by x neg() is a sign flag, with 0 meaning positive input,
1 negative input. The input is, of course, the number pointed to by p. Note
that neither x exp() nor x neg() alter the input number.

xpwr - Raise to integer powers.

struct xpr xpwr(struct xpr s,int n)

• s = structure containing input number;

15

• n = power desired.

The return value is the nth power of the first argument.

xpr2 - Multiplication by a power of 2.

struct xpr xpr2(struct xpr s,int m)

• s = structure containing input number;

• m = power of two desired.

The return value is the product of the first argument by the mth power of two.
xpr2() returns xZero in case of underflow, xPinf or xMinf in case of overflow.

xpow - Power function.

struct xpr xpow (struct xpr x, struct xpr y)

• x = base;

• y = exponent.

The return value is the power of the first argument raised to the second one.
Note that the first argument must be greater than zero.

xprcmp - Compare two extended precision numbers.

int xprcmp (const struct xpr *p, const struct xpr *q)

• p = pointer to first number;

• q = pointer to second number.

The value returned by xprcmp() is a comparison flag, with 1 meaning *p

greater than *q, 0 meaning *p equal to *q, and -1 meaning *p less than *q.
Note that the input numbers are not altered by xprcmp().

xeq - Check if two numbers are or are not equal.

int xeq (struct xpr x1, struct xpr x2)

• x1 = first number;

• x2 = second number.

The return value is 0 if x1 and x2 are different, else a non-null value.

xneq - Check if two numbers are or are not equal.

16

int xneq (struct xpr x1, struct xpr x2)

• x1 = first number;

• x2 = second number.

The return value is 0 if x1 and x2 are equal, else a non-null value.

xgt - Check if a number is greater than another one.

int xgt (struct xpr x1, struct xpr x2)

• x1 = first number;

• x2 = second number.

The return value is 0 if x1 is less or equal to x2, else a non-null value.

xge - Check if a number is greater or equal to another one.

int xge (struct xpr x1, struct xpr x2)

• x1 = first number;

• x2 = second number.

The return value is 0 if x1 is less than x2, else a non-null value.

xlt - Check if a number is less than another one.

int xlt (struct xpr x1, struct xpr x2)

• x1 = first number;

• x2 = second number.

The return value is 0 if x1 is greater or equal to x2, else a non-null value.

xle - Check if a number is less or equal to another one.

int xle (struct xpr x1, struct xpr x2)

• x1 = first number;

• x2 = second number.

The return value is 0 if x1 is greater than x2, else a non-null value.

xisNaN - Check if a number is valid or not.

int xisNaN (const struct xpr *u)

17

• u = pointer to a structure containing a number.

The return value is 0 if *u is a valid number, else a non-null value.
Remark: A number is considered invalid (not-a-number) when its exponent

is zero but not its mantissa.

xisPinf - Check if a number is equal to +oo.

int xisPinf (const struct xpr *u)

• u = pointer to a structure containing a number.

The return value is 1 if *u is equal to xPinf (+oo), 0 otherwise.

xisMinf - Check if a number is equal to -oo.

int xisMinf (const struct xpr *u)

• u = pointer to a structure containing a number.

The return value is 1 if *u is equal to xMinf (-oo), 0 otherwise.

xisordnumb - Check if a given number is an ordinary number.

int xisordnumb (const struct xpr *u)

• u = pointer to a structure containing a number.

The return value is 1 if *u is a valid number and is neither xPinf (+oo) nor
xMinf (-oo), else 0.

xis0 - Compare a number with zero.

int xis0 (const struct xpr *u)

• u = pointer to a structure containing a number.

The return value is 0 if *u is not zero, else a non-zero value.

xnot0 - Compare a number with zero.

int xnot0 (const struct xpr *u)

• u = pointer to a structure containing a number.

The return value is 0 if *u is zero, else a non-zero value.

xsgn - Obtain the sign of a number.

int xsgn (const struct xpr *u)

18

• u = pointer to a structure containing a number.

The return value is 0 when *u is zero or is an invalid number (not-a-number),
1 if *u is positive, -1 if *u is negative.

Remark: xPinf is considered a positive value, xMinf a negative value.

xtodbl - Cast extended precision numbers to double precision ones.

double xtodbl(struct xpr s)

• s = structure containing extended precision input.

The return value is the double precision float corresponding to s.

dbltox - Convert double precision numbers to extended precision ones.

struct xpr dbltox(double y)

• y = double precision floating point input.

The return value is a structure containing extended equivalent of y.

xtoflt - Cast extended precision numbers to single precision ones.

float xtoflt(struct xpr s)

• s = structure containing extended precision input.

The return value is the single precision float corresponding to s.

flttox - Convert single precision numbers to extended precision ones.

struct xpr flttox(float y)

• y = single precision floating point input.

The return value is a structure containing extended equivalent of y.

inttox - Convert signed integers to extended precision numbers.

struct xpr inttox(long n)

• n = integer input.

The return value is a structure containing extended equivalent of n.

uinttox - Convert unsigned integers to extended precision numbers.

struct xpr uinttox(unsigned long n)

19

• n = integer input.

The return value is a structure containing extended equivalent of n.

strtox - Convert a floating point number, expressed as a decimal ASCII
string in a form consistent with C, into the extended precision format.

struct xpr strtox (const char* s, char** endptr)

• s = pointer to a null terminated ASCII string expressing a decimal num-
ber;

• endptr = NULL, or address of a pointer defined outside strtox().

The value returned by strtox() is a structure containing the input number
in the extended precision format.

Remarks: The strtox() function converts the initial portion of the string
pointed to by s to its extended precision representation.

The expected form of the (initial portion of the) string is: optional lead-
ing white space as recognized by the standard library function isspace(), an
optional plus (+) or minus sign (-), and then a decimal number. A decimal
number consists of a nonempty sequence of decimal digits possibly containing a
radix character (decimal point, i.e. ’.’), optionally followed by a decimal expo-
nent. A decimal exponent consists of an E or e, followed by an optional plus or
minus sign, followed by a non-empty sequence of decimal digits, and indicates
multiplication by a power of 10.

This function returns the converted value, if any. If the correct value would
cause overflow, then xPinf or xMinf is returned, according to the sign of the
value. If the correct value would cause underflow, xZero is returned. If no
conversion is performed, xNaN is returned.

If endptr is not NULL, a pointer to the character after the last character
used in the conversion is stored in the location referenced by endptr. If no
conversion is performed, the value of s is stored in the location referenced by
endptr.

atox - Convert a floating point number, expressed as a decimal ASCII string
in a form consistent with C, into the extended precision format.

struct xpr atox(const char *s)

• s = pointer to a null terminated ASCII string expressing a decimal num-
ber.

Remark: The call atox(s) is equivalent to strtox(s, NULL).

xfmod - This function is the extended precision analog of the fmod function
from the C standard library.

20

struct xpr xfmod(struct xpr s,struct xpr t,struct xpr* q)

• s = structure containing argument of fmod;

• t = structure containing base number (t must be different from zero);

• q = pointer to store for output integer m.

The return value is the extended number with same sign as s and absolute
value less than that of t, satisfying s = m*t + x if s*t>0, or s = -m*t + x if
s*t<0.

xfrexp - This function is the extended precision analog of the frexp function
from the C standard library.

struct xpr xfrexp(struct xpr s,int *p)

• s = structure containing argument;

• p = pointer to store for output exponent e.

The return value is the extended number satisfying x = s*2^(-e) with (-1

< x < +1).

xfrac - This function returns the fractional part of the input number.

struct xpr xfrac (struct xpr s)

• s = structure containing argument.

The return value is the fractional part of the number s, with the same sign
as s.

Remark: The fractional part of the number s is 0 if s is an integer number,
otherwise is given by (-)0.xyz..., where xyz... are the digits of s following
the radix character (.) in the decimal representation. xfrac(s) has always the
same sign as s.

xtrunc - This function returns the integer part of the input number.

struct xpr xtrunc (struct xpr s)

• s = structure containing argument.

The return value is the integer part of the number s, with the same sign as
s.

Remark:
The integer part of the number s is given by (-)xyz..., where xyz... are

the digits of s before the radix character (.) in its decimal representation.

xfix - Obtain the integer part of a number (2nd method).

21

struct xpr xfix (struct xpr s)

• s = structure containing argument.

Remark:
xfix() is provided as an alternative to xtrunc(). xfix() tries to take into

account possible rounding errors and cancel their effects. The use of xfix() is
strongly suggested whenever the argument is presumed to be an integer number,
but it is reasonable to expect that some rounding errors make its actual value
a bit different from that one it should be. For instance, when sizeof(struct

xpr) == 64, on my machine I obtain

xtrunc (xdiv (inttox(100), inttox(100))) == xZero

while the expect result is xOne. This happens since xdiv (inttox(100),

inttox(100)) returns a number a bit lower than 1. On the other hand

xfix (xdiv (inttox(100), inttox(100))) == xOne .

Since xfix() introduces another type of rounding error to give the correct
answer in the cases similar to the previous one, it is not always the right choice.

xround - Round an extended precision number to its nearest integer value
(halfway cases are rounded away from zero).

struct xpr xround (struct xpr s)

• s = structure containing argument.

The return value is the integer value nearest to s.

xceil - Round an extended precision number to the smallest integral value
not less than it.

struct xpr xceil (struct xpr s)

• s = structure containing argument.

The return value is the smallest integral value not less than the argument.

xfloor - Round an extended precision number to the largest integral value
not greater than it.

struct xpr xfloor (struct xpr s)

• s = structure containing argument.

The return value is the largest integral value not greater than the argument.

xpr print - Print an extended precision number in scientific or floating point
format to a given file.

22

void xpr_print (FILE* stream, struct xpr u, int sc_not,

int sign, int lim)

• stream = file where the number must be printed;

• u = structure containing number to print;

• sc not = zero to mean floating point format, not zero to mean scientific
format;

• sign = not zero to put a plus sign (+) before the number if it is non-
negative (in case of negative number a minus sign (-) is printed even if
the parameter sign is zero);

• lim = number of decimal digits to the right of the decimal point (lim+1
= total digits displayed) in case of scientific format, otherwise number of
significant digits - 1 (lim+1 = total of significant digits).

xpr asprint - Convert an extended precision number to a string.

char* xpr_asprint (struct xpr u, int sc_not, int sign, int lim)

• u = structure containing number to print;

• sc not = zero to mean floating point format, not zero to mean scientific
format;

• sign = not zero to put a plus sign (+) before the number if it is non-
negative (in case of negative number a minus sign (-) is printed even if
the parameter sign is zero);

• lim = number of decimal digits to the right of the decimal point (lim+1
= total digits displayed) in case of scientific format, otherwise number of
significant digits - 1 (lim+1 = total of significant digits).

xpr asprint() returns the string with the converted number. The memory
for this string is calloc’ed inside the function.

xprxpr - Print an extended precision number in scientific format.

void xprxpr(struct xpr u,int lim)

• u = structure containing number to print;

• lim = number of decimal digits to the right of the decimal point (lim+1
= total digits displayed).

Remark:

xprxpr(u, lim)

23

is equivalent to

xpr_print(stdout, u, 1, 0, lim)

xtoa - This function converts an extended precision number to a string.
Scientific format is always used.

char* xtoa (struct xpr u,int lim)

• u = structure containing number to print;

• lim = number of decimal digits to the right of the decimal point (lim+1
= total digits displayed).

Remark:

xtoa(u, lim)

is equivalent to

xpr_asprint(u, 1, 0, lim)

xbprint - Print an extended precision number in binary format.

void xbprint (FILE* stream, struct xpr u)

• stream = file where the number must be printed;

• u = structure containing number to print.

The xbprint() function supports a bit oriented analysis of rounding error
effects. It always prints a newline (\n) at the end of the binary string.

xprint - Print an extended precision number as a string of hexadecimal
numbers.

void xprint(FILE* stream, struct xpr u)

• stream = file where the number must be printed;

• u = structure containing number to print.

The xprint() function supports a bit oriented analysis of rounding error
effects. It always prints a newline (\n) at the end.

xfout - Print an extended precision number on file according to a given set
of I/O flags.

24

int xfout (FILE * stream, struct xoutflags ofs, struct xpr x)

• stream = file where the number must be printed;

• ofs = structure containing all I/O flags;

• x = structure containing number to print.

The return value is 0 in case of success, -1 to mean a failure.
Remark: For the definition of struct xoutflags and the meaning of its

fields see section ”Real Arithmetic”. xfout() does not add any newline at the
end of the printed number.

xout - Print an extended precision number on stdout according to a given
set of I/O flags.

int xout (struct xoutflags ofs, struct xpr x)

• ofs = structure containing all I/O flags;

• x = structure containing number to print.

The return value is 0 in case of success, -1 to mean a failure.
Remark: For the definition of struct xoutflags and the meaning of its

fields see section ”Real Arithmetic”. xout() does not add any newline at the
end of the printed number.

xsout - Write an extended precision number on a string according to a given
set of I/O flags.

int xsout (char* s, unsigned long n, struct xoutflags ofs,

struct xpr x)

• s = pointer to a buffer of characters (char);

• n = size of the buffer;

• ofs = structure containing all I/O flags;

• x = structure containing number to print.

The return value is the number of non-null characters written to the buffer
or, if it is greater or equal than n, which would have been written to the buffer
if enough space had been available.

Remarks: For the definition of struct xoutflags and the meaning of its
fields see section ”Real Arithmetic”. xsout() always adds a null character (’\0’)
at the end of the written number. xsout() does not write more than n bytes
(including the trailing ’\0’). Thus, a return value of n or more means that the
output was truncated. In this case, the contents of the buffer pointed to by the
first argument of xsout() are completely unreliable.

25

7.3 Extended Precision Math Library

The Extended Precision Math Library provides the elementary functions nor-
mally supported in a C math library. They are designed to provide full precision
accuracy.

xsqrt - Compute the square root of an extended precision number.

struct xpr xsqrt(struct xpr x)

• x = structure containing the input number.

The return value is the square root of the input number. A negative argu-
ment results in a domain error.

xexp - Compute the exponential function.

struct xpr xexp(struct xpr x)

• x = structure containing function argument.

The return value is e (the base of natural logarithms) raised to x.

xexp2 - Compute the base-2 exponential function.

struct xpr xexp2(struct xpr x)

• x = structure containing function argument.

The return value is 2 raised to x.

xexp10 - Compute the base-10 exponential function.

struct xpr xexp10(struct xpr x)

• x = structure containing function argument.

The return value is 10 raised to x.

xlog - Compute natural (base e) logarithms.

struct xpr xlog(struct xpr x)

• x = structure containing function argument.

This function returns the natural logarithm of its argument. A null or neg-
ative argument results in a domain error.

xlog2 - Compute base-2 logarithms.

26

struct xpr xlog2(struct xpr x)

• x = structure containing function argument.

This function returns the base-2 logarithm of its argument. A null or nega-
tive argument results in a domain error.

xlog10 - Compute base-10 logarithms.

struct xpr xlog10(struct xpr x)

• x = structure containing function argument.

This function returns the base-10 logarithm of its argument. A null or
negative argument results in a domain error.

xtan - Tangent function.

struct xpr xtan(struct xpr x)

• x = structure containing function argument.

The return value is the tangent of x, where x is given in radians. xtan(x)

returns xPinf if x is equal to xPi2 (up to an integer multiple of xPi), xMinf if
x is equal to -xPi2 (up to an integer multiple of xPi). In both cases a domain
error is produced.

xcos - Cosine function.

struct xpr xcos(struct xpr x)

• x = structure containing function argument.

The return value is the cosine of x, where x is given in radians.

xsin - Sine function.

struct xpr xsin(struct xpr x)

• x = structure containing function argument.

The return value is the sine of x, where x is given in radians.

xatan - Arc tangent function.

struct xpr xatan(struct xpr x)

• x = structure containing function argument.

27

This function returns the arc tangent of x in radians and the value is math-
ematically defined to be between -Pi/2 and Pi/2 (inclusive).

xasin - Arc sine function.

struct xpr xasin(struct xpr x)

• x = structure containing function argument.

This function returns the arc sine of x in radians and the value is mathe-
matically defined to be between -Pi/2 and Pi/2 (inclusive). If x falls outside
the range -1 to 1, a domain error is produced.

xacos - Arc cosine function.

struct xpr xacos(struct xpr x)

• x = structure containing function argument.

This function returns the arc cosine of x in radians and the value is math-
ematically defined to be between zero and Pi (inclusive). If x falls outside the
range -1 to 1, a domain error is produced.

xatan2 - arc tangent function of two variables.

struct xpr xatan2 (struct xpr y, struct xpr x)

• y = structure containing first argument;

• x = structure containing second argument.

This function returns the principal value of the arc tangent of y/x, using
the signs of the two arguments to determine the quadrant of the result, a real
number in the range [-xPi,xPi) (-xPi is included, xPi is excluded). If x and y

are both zero, a domain error is produced and the dummy value zero is returned.
If x is zero and y is positive, then xPi2 (i.e. PI/2) is returned. If x is zero and
y is negative, the function returns -xPi2 (i.e. -PI/2).

xtanh - Hyperbolic tangent function.

struct xpr xtanh(struct xpr x)

• x = structure containing function argument.

The return value is the hyperbolic tangent of x.

xcosh - Hyperbolic cosine function.

struct xpr xcosh(struct xpr x)

28

• x = structure containing function argument.

The return value is the hyperbolic cosine of x.

xsinh - Hyperbolic sine function.

struct xpr xsinh(struct xpr x)

• x = structure containing function argument.

The return value is the hyperbolic sine of x.

xatanh - Hyperbolic arc tangent function.

struct xpr xatanh(struct xpr x)

• x = structure containing function argument.

This function returns the hyperbolic arc tangent of x. If the absolute value
of x is greater than 1, then a domain error is produced.

xasinh - Hyperbolic arc sine function.

struct xpr xasinh(struct xpr x)

• x = structure containing function argument.

This function returns the hyperbolic arc sine of x.

xacosh - Hyperbolic arc cosine function.

struct xpr xacosh(struct xpr x)

• x = structure containing function argument.

This function returns the hyperbolic arc cosine of x. If x is less than 1, a
domain error is produced.

7.4 Applications of Extended Precision Arithmetic

The Tchebycheff expansion supplied with the library can be used to compute the
Tchebycheff expansion coefficients of a function to an accuracy of 32 digits at
least. This ability is useful in developing high accuracy function approximations,
since the effect of rounding error on coefficients used in double precision can
effectively be eliminated with these inputs. The functions provided to this
purpose are xchcof() and xevtch().

29

xchcof - Compute the Tchebycheff expansion coefficients of a specified func-
tion f(x).

struct xpr* xchcof(int m,struct xpr (*xfunc)(struct xpr))

• m = index of the last coefficient (the computed coefficients will be m+1,
indexed from 0 to m);

• xfunc = pointer to user defined function returning extended precision
values of the function f();

The return value is the array of the computed coefficients. The equality

f(x) = c[0]/2 + Sum(k=1 to m) c[k]*Tk(x)

holds, where Tk is the kth Tchebycheff polynomial.
Remarks: The memory needed by the returned array is malloc’ed inside the

function xchcof(). To avoid memory leaks it should be explicitly freed through
a call to free(). In case of insufficient memory xchcof() will return NULL.

If m <= XMAX DEGREE (= 50), then the array returned by xchcof() will
have exactly m+1 elements, indexed from 0 to m. If m > XMAX DEGREE, then
xchcof() will behave as if m were equal to XMAX DEGREE, namely, the array
returned by xchcof() will have only XMAX DEGREE + 1 elements, indexed from
0 to XMAX DEGREE. In other words, a value of m greater than XMAX DEGREE is
ignored and replaced by XMAX DEGREE. XMAX DEGREE is a macro declared inside
the header file xpre.h .

xevtch - Evaluate an extended precision Tchebycheff expansion.

struct xpr xevtch(struct xpr x,struct xpr *a,int m)

• x = structure containing function argument;

• a = structure array containing expansion coefficients;

• m = maximum index of coefficient array (dimension=m+1).

The return value is the number given by the formula

f(x) = Sum(k=0 to m) a[k]*Tk(x),

where Tk is the kth Tchebycheff polynomial.

8 Complex Arithmetic

The second module of the HPA library is formed by functions for Extended
Precision Complex Arithmetic and functions of the Extended Precision Complex
Math Library. They are all declared in the file cxpre.h together with some
macros and numerical constants.

30

8.1 Complex constants

The header file cxpre.h defines the constants cxZero (= 0), cxOne (= 1) and
cxIU (= imaginary unit):

extern const struct cxpr cxZero;

extern const struct cxpr cxOne;

extern const struct cxpr cxIU;

which require no explanation.

8.2 Extended Precision Complex Arithmetic

The functions for complex arithmetic support the basic computations and in-
put/output operations with extended precision complex values. Some of the
functions supply capabilities designed to enhance the computational efficiency
of the complex arithmetic (e.g., cxpwr and cxpow). What follows is the complete
list of the functions with related synopses.

cxreset - Make a new complex number from its real and imaginary parts.

struct cxpr cxreset (struct xpr re, struct xpr im)

• re = structure containing real part;

• im = structure containing imaginary part.

The value returned by cxreset() is the complex number having re as its
real part, im as its imaginary part.

Remark: cxreset() is also available in the form of a macro:

#define CXRESET(re, im) (struct cxpr){re, im}

cxconv - Convert a real number into a complex one.

struct cxpr cxconv (struct xpr x)

• re = structure containing real part.

The value returned by cxconv() is the complex number having x as its real
part, zero as its imaginary part.

Remark: cxconv() is also available in the form of a macro:

#define CXCONV(x) (struct cxpr){x, xZero}

31

cxre - Obtain the real part of a complex number.

struct xpr cxre (struct cxpr z)

• z = structure containing function argument.

The value returned by cxre(z) is the real part of z.
Remark: cxre() is also available in the form of a macro:

#define CXRE(z) (z).re

cxim - Obtain the imaginary part of a complex number.

struct xpr cxim (struct cxpr z)

• z = structure containing function argument.

The value returned by cxim(z) is the imaginary part of z.
Remark: cxim() is also available in the form of a macro:

#define CXIM(z) (z).im

cxswap - Swap the real and the imaginary part of a complex number.

struct cxpr cxswap (struct cxpr z)

• z = structure containing function argument.

The value returned by cxswap(z) is the complex number {cxim(z), cxre(z)}.
Remark: cxswap() is also available in the form of a macro:

#define CXSWAP(z) (struct cxpr){(z).im, (z).re}

cxconj - Calculate the complex conjugate of a complex number.

struct cxpr cxconj (struct cxpr z)

• z = structure containing function argument.

The cxconj() function returns the complex conjugate value of its argument,
i.e. the value obtained by changing the sign of the imaginary part.

cxneg - Change sign (unary minus)

struct cxpr cxneg (struct cxpr z)

32

• z = structure containing function argument.

cxneg(z) returns the complex number -z: if z = a+ib, then cxneg(z)

returns -a-ib.

cxinv - Obtain the reciprocal of a complex number.

struct cxpr cxinv (struct cxpr z)

• z = structure containing function argument.

The value returned by cxinv() is the reciprocal of its argument. If z is zero,
then a division-by-zero error is produced.

cxabs - Calculate the absolute value of a complex number.

struct xpr cxabs (struct cxpr z)

• z = structure containing function argument.

cxabs(z) returns the absolute value of the complex number z. The result
is a real number.

cxarg - Calculate the argument of a complex number.

struct xpr cxarg (struct cxpr z)

• z = structure containing function argument.

cxarg(z) returns the argument or phase angle of the complex number z.
The result is a real number in the range [-xPi,xPi) (-xPi is included, xPi is
excluded). cxarg(z) is equivalent to xatan2(z.im, z.re).

cxadd - Add/subtract two extended precision complex numbers.

struct cxpr cxadd (struct cxpr z1, struct cxpr z2, int k)

• z1 = structure containing first number;

• z2 = structure containing second number;

• k = control flag: if 0, then z1 and z2 are added, else they are subtracted
(z1-z2).

The value returned by cxadd() is the result of the addition/subtraction.

cxsum - Add two extended precision complex numbers.

struct cxpr cxsum (struct cxpr z1, struct cxpr z2)

33

• z1 = structure containing first number;

• z2 = structure containing second number.

The value returned by cxsum() is the result of the addition z1 + z2.

cxsub - Subtract two extended precision complex numbers.

struct cxpr cxsub (struct cxpr z1, struct cxpr z2)

• z1 = structure containing first number;

• z2 = structure containing second number.

The value returned by cxsub() is the result of the subtraction z1 - z2.

cxmul - Multiply two extended precision complex numbers.

struct cxpr cxmul (struct cxpr z1, struct cxpr z2)

• z1 = structure containing first number;

• z2 = structure containing second number.

The value returned by cxmul() is the product z1 * z2.

cxrmul - Multiply a complex number by a real one.

struct cxpr cxrmul (struct xpr c, struct cxpr z)

• c = structure containing a real number;

• z = structure containing a complex number.

The value returned by cxrmul() is the product c * z.

cxdrot - Multiply a complex number by the imaginary unit.

struct cxpr cxdrot (struct cxpr z)

• z = structure containing function argument.

The value returned by cxdrot(z) is the product of z times the imaginary
unit.

cxrrot - Multiply a complex number by -1i, where 1i is the imaginary unit.

struct cxpr cxrrot (struct cxpr z)

• z = structure containing function argument.

34

The value returned by cxrrot(z) is the product of z times the negative
imaginary unit.

cxdiv - Divide two extended precision complex numbers.

struct cxpr cxdiv (struct cxpr z1, struct cxpr z2)

• z1 = structure containing first number;

• z2 = structure containing second number.

The value returned by cxdiv(z1, z2) is the quotient z1 / z2. If z2 is zero,
then a division-by-zero error is produced.

cxgdiv - Gaussian division between complex numbers having both real and
imaginary part integer.

struct cxpr cxgdiv (struct cxpr z1, struct cxpr z2)

• z1 = structure containing first number;

• z2 = structure containing second number.

After eventually rounding z1 and z2 by means of cxround() (see below),
cxgdiv(z1, z2) returns the quotient of the gaussian division of z1 by z2. If
z2 is zero, then a division-by-zero error is produced.

If you do not know what gaussian division means, probably you will never
need this function :)

cxgmod - Remainder of the Gaussian division.

struct cxpr cxgmod (struct cxpr z1, struct cxpr z2)

• z1 = structure containing first number;

• z2 = structure containing second number.

After eventually rounding z1 and z2 by means of cxround() (see below),
cxgmod(z1, z2) returns the remainder of the gaussian division of z1 by z2. If
z2 is zero, then a division-by-zero error is produced.

If you do not know what gaussian division means, probably you will never
need this function :)

cxidiv - Integer division.

struct cxpr cxidiv (struct cxpr z1, struct cxpr z2)

• z1 = structure containing first number;

• z2 = structure containing second number.

35

After eventually rounding z1 and z2 by means of cxround() (see below),
cxidiv(z1, z2) returns the quotient of the integer division of z1 by z2. If z2 is
zero, then a division-by-zero error is produced. cxidiv() is a smooth extension
of the integer division between real numbers.

cxmod - Remainder of the integer division.

struct cxpr cxmod (struct cxpr z1, struct cxpr z2)

• z1 = structure containing first number;

• z2 = structure containing second number.

After eventually rounding z1 and z2 by means of cxround() (see below),
cxmod(z1, z2) returns the remainder of the integer division of z1 by z2. If z2
is zero, then a division-by-zero error is produced.

cxpwr - Raise to integer powers.

struct cxpr cxpwr (struct cxpr z, int n)

• z = structure containing input number;

• n = exponent.

The return value is the nth power of the first argument.

cxpow - Power function.

struct cxpr cxpow (struct cxpr z1, struct cxpr z2)

• z1 = base;

• z2 = exponent.

The return value is the power of the first argument raised to the second
one. Note that the modulus of the first argument must be greater than zero, if
the real part of z2 is less or equal than zero, otherwise a bad-exponent error is
produced.

cxsqr - Square of a number.

struct cxpr cxsqr (struct cxpr z)

• z = structure containing function argument.

This function returns the square of its argument.

cxroot - nth root of a complex number.

36

struct cxpr cxroot (struct cxpr z, int i, int n)

cxroot(z,i,n) returns the ith branch of the nth root of z. If n is zero or
negative and the modulus of z is zero, then a bad-exponent error is produced.

cxsqrt - Principal branch of the square root of a complex number.

struct cxpr cxsqrt (struct cxpr z)

• z = structure containing function argument.

This function returns the principal branch of the square root of its argument.

cxprcmp - Compare two extended precision complex numbers.

struct cxprcmp_res cxprcmp (const struct cxpr* z1,

const struct cxpr* z2)

• z1 = pointer to first number;

• z2 = pointer to second number.

The value returned by cxprcmp() is a structure formed by two comparison
flags:

struct cxprcmp_res

{

int re, im;

};

If the .re field of the returned structure is:

• +1, then z1->re is greater than z2->re,

• 0, then z1->re is equal to z2->re,

• -1, then z1->re is less than z2->re.

The meaning of the .im field is the same but refers to z1->im and z2->im.
Note that the input numbers are not altered by cxprcmp().

cxis0 - Compare a complex number with zero.

int cxis0 (const struct cxpr* z)

• z = pointer to an extended precision complex number.

The return value is 0 if *z is not zero, else a non-zero value.

cxnot0 - Compare a complex number with zero.

37

int cxnot0 (const struct cxpr* z)

• z = pointer to an extended precision complex number.

The return value is 0 if *z is zero, else a non-zero value.

cxeq - Check if two complex numbers are or are not equal.

int cxeq (struct cxpr z1, struct cxpr z2)

• z1 = first number;

• z2 = second number.

The return value is 0 if z1 and z2 are different, else a non-null value.

cxneq - Check if two complex numbers are or are not equal.

int cxneq (struct cxpr z1, struct cxpr z2)

• z1 = first number;

• z2 = second number.

The return value is 0 if z1 and z2 are equal, else a non-null value.

cxgt - Check if a complex number is greater than another one.

int cxgt (struct cxpr z1, struct cxpr z2)

• z1 = first number;

• z2 = second number.

The return value is 0 if z1 is not greater than z2, else a non-null value.

cxge - Check if a complex number is greater or equal to another one.

int cxge (struct cxpr z1, struct cxpr z2)

• z1 = first number;

• z2 = second number.

The return value is 0 if z1 is not greater or equal to z2, else a non-null value.

cxlt - Check if a complex number is less than another one.

int cxlt (struct cxpr z1, struct cxpr z2)

• z1 = first number;

38

• z2 = second number.

The return value is 0 if z1 is not less than z2, else a non-null value.

cxle - Check if a complex number is less or equal to another one.

int cxle (struct cxpr z1, struct cxpr z2)

• z1 = first number;

• z2 = second number.

The return value is 0 if z1 is not less or equal to z2, else a non-null value.

dctocx - Convert a double precision complex number to an extended preci-
sion number.

struct cxpr dctocx (double re, double im)

• re = real part of the double precision complex number;

• im = imaginary part of the double precision complex number.

The value returned by dctocx(re,im) is the extended precision equivalent
of the complex number (re, im).

cxtodc - Convert an extended precision complex number to a double preci-
sion complex number.

void cxtodc (const struct cxpr *z, double *re, double *im)

• z = pointer to an extended precision complex number;

• re = pointer to a double precision number;

• im = pointer to a double precision number.

cxtodc() stores in its second and last argument respectively the real and
the imaginary part of the number pointed to by its first argument.

fctocx - Convert a single precision complex number to an extended precision
number.

struct cxpr fctocx (float re, float im)

• re = real part of the single precision complex number;

• im = imaginary part of the single precision complex number.

39

The value returned by fctocx(re,im) is the extended precision equivalent
of the complex number (re, im).

cxtofc - Convert an extended precision complex number to a single precision
complex number.

void cxtofc (const struct cxpr *z, float *re, float *im)

z = pointer to an extended precision complex number;

• re = pointer to a single precision number;

• im = pointer to a single precision number.

cxtofc() stores in its second and last argument respectively the real and
the imaginary part of the number pointed to by its first argument.

ictocx - Convert an integer complex number to an extended precision num-
ber.

struct cxpr ictocx (long re, long im)

• re = real part of the integer complex number;

• im = imaginary part of the integer complex number.

The value returned by ictocx(re,im) is the extended precision equivalent
of the complex number (re, im).

uctocx - Convert an integer complex number to an extended precision num-
ber.

struct cxpr uctocx (unsigned long re, unsigned long im)

• re = real part of the integer complex number;

• im = imaginary part of the integer complex number.

The value returned by uctocx(re,im) is the extended precision equivalent
of the complex number (re, im).

strtocx - Convert a floating point complex number, expressed as a decimal
ASCII string in a form consistent with C, into the extended precision format.

struct cxpr strtocx (const char *s, char **endptr)

• s = pointer to a null terminated ASCII string expressing a complex num-
ber;

• endptr = NULL or address of a pointer defined outside strtocx().

40

The value returned by strtocx() is the input number in extended precision
format.

Remarks: The strtocx() function converts the initial portion of the string
pointed to by s to its extended precision representation.

The expected form of the (initial portion of the) string is optional leading
white space as recognized by the standard library function isspace(), an op-
tional plus (+) or minus sign (-) and then a decimal number. A decimal number
consists of a nonempty sequence of decimal digits possibly containing a radix
character (decimal point, i.e. ’.’), optionally followed by a decimal exponent.
A decimal exponent consists of an E or e, followed by an optional plus or mi-
nus sign, followed by a non-empty sequence of decimal digits, and indicates
multiplication by a power of 10.

After this decimal number there can be an i character or, alternatively, some
optional white spaces, an optional plus (+) or minus sign (-) and then another
decimal number followed by an i character. Examples of valid representations
of complex numbers are:

"12","34.56",".7895i","-34.56-7.23i", "-45.7 +23.4i".
This function returns the converted value, if any. If the correct value for

the real or/and the imaginary part would cause overflow, then xPinf or xMinf
is returned in the corresponding field, according to the sign of the value. If
the correct value would cause underflow, xZero is returned. If no conversion is
performed, xNaN is returned.

If endptr is not NULL, a pointer to the character after the last character
used in the conversion is stored in the location referenced by endptr. If no
conversion is performed, the value of s is stored in the location referenced by
endptr.

atocx - Convert a floating point complex number, expressed as a decimal
ASCII string in a form consistent with C, into the extended precision format.

struct cxpr atocx (const char *s)

• s = pointer to a null terminated ASCII string expressing a complex num-
ber.

The return value is the input number converted to the extended precision
format.

Remark: The call atocx(s) is equivalent to strtocx(s, NULL).

cxpr asprint - Convert an extended precision complex number to a string.

char *cxpr_asprint (struct cxpr z, int sc_not, int sign,

int lim)

• z = structure containing number to print;

• sc not = zero to mean floating point notation, not zero to mean scientific
notation;

41

• sign = not zero to put a plus sign (+) before the real part of the number if
it is non-negative (in case of negative real part a minus sign (-) is printed
even if the parameter sign is zero);

• lim = number of decimal digits to the right of the decimal point (lim+1
= total digits displayed) in case of scientific notation, else number of sig-
nificant digits - 1 (lim+1 = total of significant digits).

cxpr asprint() returns the string with the converted number. The memory
for this string is calloc’ed inside the function. cxpr asprint() uses always the
format "a+bi" in the conversion.

cxtoa - This function converts an extended precision complex number to a
string. Scientific notation is always used for both real and imaginary part.

char *cxtoa (struct cxpr z, int lim)

• z = structure containing number to print;

• lim = number of decimal digits to the right of the decimal point (lim+1
= total digits displayed).

Remark:

cxtoa(z, lim)

is equivalent to

cxpr_asprint(z, 1, 0, lim)

cxfrac - Fractional part of both real and imaginary part.

struct cxpr cxfrac (struct cxpr z)

• z = structure containing function argument.

cxfrac(z) returns {xfrac(z.re), xfrac(z.im)}.

cxtrunc - Integer part of both real and imaginary part.

struct cxpr cxtrunc (struct cxpr z)

• z = structure containing function argument.

cxtrunc(z) returns {xtrunc(z.re), xtrunc(z.im)}.

cxfix - Integer part of both real and imaginary part (2nd method).

struct cxpr cxfix (struct cxpr z)

42

• z = structure containing function argument.

cxfix(z) returns {xfix(z.re), xfix(z.im)}.

cxround - Rounding real and imaginary part to the nearest integer values
(halfway cases are rounded away from zero).

struct cxpr cxround (struct cxpr z)

• z = structure containing function argument.

cxround(z) returns {xround(z.re), xround(z.im)}.

cxfloor - Rounding real and imaginary part to the largest integral values
not greater than them.

struct cxpr cxfloor (struct cxpr z)

• z = structure containing function argument.

cxfloor(z) returns {xfloor(z.re), xfloor(z.im)}.

cxceil - Rounding real and imaginary part to the smallest integral values
not less than them.

struct cxpr cxceil (struct cxpr z)

• z = structure containing function argument.

cxceil(z) returns {xceil(z.re), xceil(z.im)}.

cxpr print - Print an extended precision complex number in scientific or
floating point notation to a given file.

void cxpr_print (FILE * stream, struct cxpr z, int sc_not,

int sign, int lim)

• stream = file where the number must be printed;

• z = structure containing number to print;

• sc not = zero to mean floating point notation, not zero to mean scientific
notation;

• sign = not zero to put a plus sign (+) before the real part of the number if
it is non-negative (in case of negative real part a minus sign (-) is printed
even if the parameter sign is zero);

• lim = number of decimal digits to the right of the decimal point (lim+1
= total digits displayed) in case of scientific notation, else number of sig-
nificant digits - 1 (lim+1 = total of significant digits).

43

cxprcxpr - Print an extended precision complex number in scientific nota-
tion.

void cxprcxpr (struct cxpr z, int m)

• z = structure containing number to print;

• lim = number of decimal digits to the right of the decimal point (lim+1
= total digits displayed).

Remark:

cxprcxpr(z, lim)

is equivalent to

cxpr_print(stdout, z, 1, 0, lim)

cxprint - Print an extended precision complex number as a couple of strings
of hexadecimal numbers.

void cxprint (FILE * stream, struct cxpr z)

• stream = file where the number must be printed;

• z = structure containing number to print.

The cxprint() function supports a bit oriented analysis of rounding error
effects. It always prints a newline (\n) at the end.

cxfout - Print an extended precision complex number to a file according to
a given set of I/O flags.

int cxfout (FILE * stream, struct xoutflags ofs, struct cxpr z)

• stream = file where the number must be printed;

• ofs = structure containing all I/O flags;

• z = structure containing number to print.

The return value is 0 in case of success, -1 to mean a failure.
Remark: For the definition of struct xoutflags and the meaning of its

fields see section ”Real Arithmetic”. cxfout() does not add any newline at the
end of the printed number.

cxout - Print an extended precision complex number on stdout according
to a given set of I/O flags.

44

int cxout (struct xoutflags ofs, struct cxpr z)

• ofs = structure containing all I/O flags;

• z = structure containing number to print.

The return value is 0 in case of success, -1 to mean a failure.
Remark: For the definition of struct xoutflags and the meaning of its

fields see section ”Real Arithmetic”. cxout() does not add any newline at the
end of the printed number.

cxsout - Write an extended precision complex number on a string according
to a given set of I/O flags.

unsigned long cxsout (char *s, unsigned long n,

struct xoutflags ofs, struct cxpr z)

• s = pointer to a buffer of characters (char);

• n = size of the buffer;

• ofs = structure containing all I/O flags;

• z = structure containing number to print.

The return value is the number of the non-null characters written to the
buffer or, if it is greater or equal than n, which would have been written to the
buffer if enough space had been available.

Remark: For the definition of struct xoutflags and the meaning of its
fields see section ”Real Arithmetic”. cxsout() always adds a null character
(’\0’) at the end of the written number. cxsout() does not write more than
n bytes (including the trailing ’\0’). Thus, a return value of n or more means
that the output was truncated. In this case, the contents of the buffer pointed
to by the first argument of cxsout() are completely unreliable.

8.3 Extended Precision Complex Math Library

The Extended Precision Complex Math Library provides the elementary func-
tions normally supported in a complex math library. They are designed to
provide full precision accuracy.

cxexp - Compute the complex exponential function.

struct cxpr cxexp (struct cxpr z)

• z = structure containing function argument.

45

The return value is e (the base of natural logarithms) raised to z.

cxexp2 - Compute the base-2 complex exponential function.

struct cxpr cxexp2 (struct cxpr z)

• z = structure containing function argument.

The return value is 2 raised to z.

cxexp10 - Compute the base-10 complex exponential function.

struct cxpr cxexp10 (struct cxpr z)

• z = structure containing function argument.

The return value is 10 raised to z.

cxlog - Compute natural (base e) logarithm of a complex number.

struct cxpr cxlog (struct cxpr z)

• z = structure containing function argument.

This function returns the natural logarithm of its argument. A null argument
results in a domain error. The imaginary part of the result lies in the interval
[-xPi,xPi) (-xPi is included, xPi is excluded).

cxlog2 - Compute base-2 logarithm of a complex number.

struct cxpr cxlog2 (struct cxpr z)

• z = structure containing function argument.

This function returns the base-2 logarithm of its argument. A null argument
results in a domain error.

cxlog10 - Compute base-10 logarithm of a complex number.

struct cxpr cxlog10 (struct cxpr z)

• z = structure containing function argument.

This function returns the base-10 logarithm of its argument. A null argument
results in a domain error.

cxlog sqrt - Compute natural (base e) logarithm of the principal branch of
the square root of a complex number.

46

struct cxpr cxlog_sqrt (struct cxpr z)

• z = structure containing function argument.

This function returns the natural logarithm of the principal branch of the
square root of its argument. A null argument results in a domain error. The
imaginary part of the result lies in the range [-xPi2,xPi2) (-xPi2 is included,
xPi2 is excluded).

cxtan - Complex tangent function.

struct cxpr cxtan (struct cxpr z)

• z = structure containing function argument.

The return value is the tangent of the complex number z. cxtan(z) yields
a domain error if the imaginary part of z is null and the real part is equal, up
to an integer multiple of xPi, to xPi2.

cxcos - Complex cosine function.

struct cxpr cxcos (struct cxpr z)

• z = structure containing function argument.

The return value is the cosine of the complex number z.

cxsin - Complex sine function.

struct cxpr cxsin (struct cxpr z)

• z = structure containing function argument.

The return value is the sine of the complex number z.

cxatan - Complex arc tangent function.

struct cxpr cxatan (struct cxpr z)

• z = structure containing function argument.

This function returns the arc tangent of the complex number z, i.e. a number
w such that z = tan(w). If the real part of z is null and the imaginary part is
equal to +1 or -1, then a domain error is produced.

cxasin - Complex arc sine function.

struct cxpr cxasin (struct cxpr z)

47

• z = structure containing function argument.

This function returns the arc sine of the complex number z, i.e. a number w
such that z = sin(w).

cxacos - Complex arc cosine function.

struct cxpr cxacos (struct cxpr z)

• z = structure containing function argument.

This function returns the arc cosine of the complex number z, i.e. a number
w such that z = cos(w).

cxtanh - Complex hyperbolic tangent function.

struct cxpr cxtanh (struct cxpr z)

• z = structure containing function argument.

The return value is the hyperbolic tangent of the complex number z. cxtanh(z)
yields a domain error if the real part of z is null and the imaginary part is equal,
up to an integer multiple of xPi, to xPi2.

cxcosh - Complex hyperbolic cosine function.

struct cxpr cxcosh (struct cxpr z)

• z = structure containing function argument.

The return value is the hyperbolic cosine of the complex number z.

cxsinh - Complex hyperbolic sine function.

struct cxpr cxsinh (struct cxpr z)

• z = structure containing function argument.

The return value is the hyperbolic sine of the complex number z.

cxatanh - Complex hyperbolic arc tangent function.

struct cxpr cxatanh (struct cxpr z)

• z = structure containing function argument.

This function returns the hyperbolic arc tangent of the complex number z,
i.e. a number w such that z = tanh(w). If the imaginary part of z is null and
the real part is equal to +1 or -1, then a domain error is produced.

cxasinh - Complex hyperbolic arc sine function.

48

struct cxpr cxasinh (struct cxpr z)

• z = structure containing function argument.

This function returns the hyperbolic arc sine of the complex number z, i.e.
a number w such that z = sinh(w).

cxacosh - Complex hyperbolic arc cosine function.

struct cxpr cxacosh (struct cxpr z)

• z = structure containing function argument.

This function returns the hyperbolic arc cosine of the complex number z,
i.e. a number w such that z = cosh(w).

FINAL REMARK: The header file cxpre.h also defines the macros cxconvert,
cxdiff, cxprod and cxipow:

#define cxconvert cxconv

#define cxdiff cxsub

#define cxprod cxmul

#define cxipow cxpwr

This allows to use cxconvert as synonym of cxconv, cxdiff as synonym of
cxsub, cxprod in place of cxmul, and cxipow for cxpwr.

9 The C++ interface

The HPA library supplies a C++ wrapper allowing to perform high precision
computations with the same syntax of the normal code. Using the C++ wrapper
permits you to write things like:

// Compute the factorial of the integer n

xreal factorial(xreal n)

{

xreal i;

xreal product = 1;

for (i=2; i <= n; i++)

product *= i;

return product;

}

49

Technically, the C++ wrapper is contained in a separate library. However, this
module is distributed together with the HPA library as an extension to it. This
section of the manual describes the C++ interface of this extension. This one
is formed by two classes, called xreal and xcomplex respectively. The type
xreal can be used to declare or define real variables. In addition, it defines
the mathematical operations and functions which can be used with them. The
same is for the type xcomplex with respect to complex variables and their
manipulation. Once you have variables of xreal and xcomplex type, you can
use the usual C++ syntax, but all computations will be performed with the high
precision math library. Of course, this possibility greatly simplifies the writing
of code. Note the difference between

struct xpr x, y;

char buffer[256];

while ((fgets (buffer, 256, stdin)))

{

x = atox (buffer);

printf ("The square root of 2 * %s + 1 is ", buffer);

y = xadd (xpr2(x, 1), xOne, 0);

xprxpr (xsqrt (y), 30);

putchar (’\n’);

}

and its C++ version:

xreal x;

while (x.getfrom(cin) > 0)

cout << "The square root of 2 * " << x << " + 1 is "

<< sqrt(2 * x + 1) << endl;

which is much more compact and easier to understand.
The use of the C++ wrapper requires however a recent and ANSI-compliant

C++ compiler (for instance g++ 3.x). Moreover, before declaring or defining
variables of xreal type and before using anyone of the functions or operators
declared in the header file xreal.h, you have to insert the line

#include <xreal.h>

in your source code file.
Similarly, before declaring or defining variables of xcomplex type and be-

fore using anyone of the functions or operators declared in the header file
xcomplex.h, you have to add the line

#include <xcomplex.h>

50

to your source code file.
After that, it is recommendable to add the directive

using namespace HPA;

since all objects of the C++ wrapper are declared or defined within the names-
pace HPA. Alternatively, you should always use the prefix HPA:: in front of any
identifiers coming from the files xreal.h or xcomplex.h. One has to tell the
compiler indeed, where it has to look for the classes xreal, xcomplex and the
related stuff.

This code comes from a real program:

#include<iostream>

#include<xreal.h>

using namespace HPA;

int main (void)

{

xreal x;

while (x.getfrom(cin) > 0)

cout << "The square root of 2 * " << x << " + 1 is "

<< sqrt(2 * x + 1) << endl;

return 0;

}

The header files xreal.h and xcomplex.h make also directly available the stan-
dard classes ostream, istream and string (see sections ”The xreal class” and
”The xcomplex class”).

10 Compiling and linking with the C++ wrap-

per

Whenever you have to compile and build a program making use of the C++
wrapper for the HPA library, you can do it by following the same instructions
given in the section ”Compiling and linking”, just take care to use hpaxxconf

in place of hpaconf, as in

c++ -c $(hpaxxconf -c) example.cc

c++ -c ‘hpaxxconf -c‘ example.cc

to compile the file example.cc and obtain the object file example.o, or in

c++ example.o $(hpaxxconf -l) -o example

51

c++ example.o ‘hpaxxconf -l‘ -o example

to do the linkage. If you want, you may also compile and build at the same time
by using

c++ example.cc $(hpaxxconf -c -l) -o example

c++ example.cc ‘hpaxxconf -c -l‘ -o example

All these examples assume that you are working with bash or with another shell
sh-compatible. In any case, the synopsis of hpaxxconf is the same of hpaconf.

Warning: The command hpaxxconf is available only if the C++ wrapper
was also built when the HPA library was installed on the system where you are
working. It is possible to install the HPA library without its C++ wrapper. In
this case, if you try to launch the command hpaxxconf, the shell will print the
error message "Command not found" or something similar.

11 The xreal class

The interface of the xreal class is contained in the header file xreal.h, whose
contents you can find here together with the necessary explanations.

#ifndef _XREAL_H_

#define _XREAL_H_

#include <xpre.h>

#include <iostream>

#include <string>

#include <cstdlib>

using std::ostream;

using std::istream;

using std::string;

namespace HPA {

class xreal {

// << and >> are used respectively for the output and the

// input of extended precision numbers.

// The input operator >> reads a double precision

// number and then converts it to an extended precision

// number. This can have undesirable rounding effects.

// To avoid them, use the input function

// xreal::getfrom() (see below).

friend ostream& operator<< (ostream& os, const xreal& x);

52

friend istream& operator>> (istream& is, xreal& x);

// +, -, *, / are the usual arithmetic operators

friend xreal operator+ (const xreal& x1, const xreal& x2);

friend xreal operator- (const xreal& x1, const xreal& x2);

friend xreal operator* (const xreal& x1, const xreal& x2);

friend xreal operator/ (const xreal& x1, const xreal& x2);

// x % n is equal to x * pow (2,n)

friend xreal operator% (const xreal& x1, int n);

// ==, !=, <=, >=, <, > are the usual comparison operators

friend int operator== (const xreal& x1, const xreal& x2);

friend int operator!= (const xreal& x1, const xreal& x2);

friend int operator<= (const xreal& x1, const xreal& x2);

friend int operator>= (const xreal& x1, const xreal& x2);

friend int operator< (const xreal& x1, const xreal& x2);

friend int operator> (const xreal& x1, const xreal& x2);

// sget (s, n, x) tries to read an extended precision

// number from the string ’s’ starting from the position

// ’n’. The retrieved number is converted and stored in

// ’x’. The return value is the number of characters

// composing the decimal representation of this number

// as read from ’s’. For example, if s == "12.34dog" and

// n == 0, then ’x’ is set to 12.34 and the return value

// is 5.

// If the portion of ’s’ starting from the position ’n’

// can not be converted to a number, then ’x’ is set to

// xNAN and 0 is returned.

// If the exactly converted value would cause overflow,

// then xINF or x_INF is returned, according to the sign

// of the value.

// If ’n’ is greater or equal to the length of ’s’, then 0

// is returned and ’x’ is set to xZERO.

friend unsigned long sget (string s, unsigned long startptr,

xreal& x);

// bget (buff, x) tries to read an extended precision

// number from the buffer pointed to by ’buff’.

// The retrieved number is converted and stored in ’x’.

// The return value is a pointer to the character after

// the last character used in the conversion.

// For example, if ’buff’ is a pointer to the buffer

// "12.34dog", then ’x’ is set to 12.34 and the return

// value is a pointer to "dog" (i.e., a pointer

53

// to the character ’d’).

// If the initial portion of the string pointed to by ’buff’

// can not be converted to a number, then ’x’ is set to xNAN

// and ’buff’ is returned.

// If the exactly converted value would cause overflow,

// then xINF or x_INF is returned, according to the sign

// of the value.

// If ’buff’ is NULL (0), then an error message is printed

// on ’cerr’ (standard error device).

friend const char* bget (const char* buff, xreal& x);

// compare (x1, x2) returns

//+1 to mean x1 > x2

// 0 to mean x1 == x2

//-1 to mean x1 < x2

friend int compare (const xreal& x1, const xreal& x2);

//isNaN (x) returns 1 when x == xNAN, else 0

friend int isNaN (const xreal& x);

// The following functions do not need a particular comment:

// each of them is defined as the corresponding function

// of the standard math library, that is to say the function

// from <cmath> having the same name.

// However qfmod(), sfmod(), frac() and fix() do not have

// counterparts in the standard math library.

// With respect to fmod(), qfmod() requires one more

// argument, where the quotient of the division of

// the first argument by the second one is stored.

// sfmod (x,&n) stores in the integer variable

// ’n’ the integer part of ’x’ and, at the same time,

// returns the fractional part of ’x’.

// The usage of sfmod() is strongly discouraged.

// frac() returns the fractional part of its argument.

// Finally, fix() is a frontend to the xfix()

// function (see section "Extended Precision Floating

// Point Arithmetic").

friend xreal abs (const xreal& s);

friend xreal frexp (const xreal& s, int *p);

friend xreal qfmod (const xreal& s, const xreal& t, xreal& q);

friend xreal fmod (const xreal& s, const xreal& t);

friend xreal sfmod (const xreal& s, int *p);

friend xreal frac (const xreal& x);

friend xreal trunc (const xreal& x);

friend xreal round (const xreal& x);

friend xreal ceil (const xreal& x);

54

friend xreal floor (const xreal& x);

friend xreal fix (const xreal& x);

friend xreal tan (const xreal& x);

friend xreal sin (const xreal& x);

friend xreal cos (const xreal& x);

friend xreal atan (const xreal& a);

friend xreal atan2 (const xreal& y, const xreal& x);

friend xreal asin (const xreal& a);

friend xreal acos (const xreal& a);

friend xreal sqrt (const xreal& u);

friend xreal exp (const xreal& u);

friend xreal exp2 (const xreal& u);

friend xreal exp10 (const xreal& u);

friend xreal log (const xreal& u);

friend xreal log2 (const xreal& u);

friend xreal log10 (const xreal& u);

friend xreal tanh (const xreal& v);

friend xreal sinh (const xreal& v);

friend xreal cosh (const xreal& v);

friend xreal atanh (const xreal& v);

friend xreal asinh (const xreal& v);

friend xreal acosh (const xreal& v);

friend xreal pow (const xreal& x, const xreal& y);

public:

// Various constructors. They allow to define

// an extended precision number in several ways.

// In addition, they allow for conversions from other

// numeric types.

xreal (const struct xpr* px = &xZero);

xreal (struct xpr x);

xreal (double x);

xreal (float x);

xreal (int n);

xreal (long n);

xreal (unsigned int u);

xreal (unsigned long u);

// This constructor requires a special comment. If

// only the first argument is present, the initial portion

// of the string pointed to by this argument is converted

// into an extended precision number, if a conversion is

// possible. If no conversion is possible, then the

// returned number is xNAN. If the second argument is

// present and is not null, it must be the address of a

// valid pointer to ’char’.

55

// Before returning, the constructor will set this pointer

// so that it points to the character of the string ’str’ after the last

// character used in the conversion.

xreal (const char* str, char** endptr = 0);

xreal (string str);

xreal (const xreal& x);

// Assignment operators. They do not require

// any explanation with the only exception of ’%=’,

// which combines a ’%’ operation with an assignment.

// So, x %= n is equivalent to x *= pow(2,n) .

xreal& operator= (const xreal& x);

xreal& operator+= (const xreal& x);

xreal& operator-= (const xreal& x);

xreal& operator*= (const xreal& x);

xreal& operator/= (const xreal& x);

xreal& operator%= (int n);

// Increment and decrement operators. Both prefixed

// and postfixed versions are defined.

xreal& operator++ ();

xreal& operator-- ();

xreal& operator++ (int dummy);

xreal& operator-- (int dummy);

// Destructor. You will never have to recall it

// explicitly in your code.

~xreal (void);

// Integer exponent power. For any extended precision

// number ’x’, x(n) is equal to ’x’ raised to ’n’.

xreal operator() (int n) const;

// This is the usual unary minus.

xreal operator-() const;

// For any extended precision number ’x’, !x evaluates to 1

// when ’x’ is null, else it evaluates to 0.

int operator!() const;

// x.isneg() returns 1 if ’x’ is negative, else it

// returns 0.

int isneg() const;

// x.exp() returns the exponent part

// of the binary representation of ’x’.

56

int exp() const;

// Functions for conversions. x._2double(), x._2float(),

// x._2xpr() and x._2string() convert the extended precision

// number ’x’ in a double precision number, in a single

// precision number, in a structure of

// type ’xpr’, and in a string, respectively.

double _2double () const;

float _2float() const;

struct xpr _2xpr() const;

string _2string() const;

// The member function xreal::getfrom() can be used to

// recover an extended precision number from an input

// stream. The input stream is passed as argument to the

// function.

// The return value is 0 in case of input error (in case

// of End-Of-File, for example).

// When it starts to process its input, this function drops

// all the eventual leading white spaces.

// After reading the first non space character, it

// continues to read from the input stream until it finds

// a white space or reaches the End-Of-File.

// Then it tries to convert into an extended

// precision number the (initial portion of the) string just

// read.

// If no conversion can be performed, then x.getfrom(is)

// sets ’x’ to the value xNAN.

// If the exactly converted value would cause overflow,

// then ’x’ is set to xINF or x_INF, according to the sign

// of the correct value.

int getfrom (istream& is);

// The member function xreal::print() can be used to write

// an extended precision number to an output stream.

// The output stream is passed to the function as first

// argument. The next three arguments have the same meanings

// of the fields ’notat’, ’sf’ and ’lim’ of the

// structure ’xoutflags’, respectively (see section "Real Arithmetic").

int print (ostream& os, int sc_not, int sign, int lim) const;

// The function call x.asprint(sc_not, sign, lim) returns

// a buffer of characters with the representation, in form

// of a decimal ASCII string, of the extended precision

// number ’x’. The arguments ’sc_not’, ’sign’ and ’lim’ are

// used to format the string.

57

// They have the same meanings of the fields ’notat’, ’sf’

// and ’lim’ of the structure ’xoutflags’, respectively (see section

// "Real Arithmetic").

// The buffer returned by this function is malloc’ed inside

// the function. In case of insufficient memory, the null

// pointer is returned.

char* asprint (int sc_not, int sign, int lim) const;

// The following static functions are used to set

// or get the values of the fields of the structure

// ’xreal::ioflags’. This structure is a static member

// variable of the class ’xreal’ and it is used by the

// output operator << to know how to format its second

// argument. The meaning of the fields of the structure

// ’xreal::ioflags’ is explained in the section

// "Real arithmetic".

// xreal::set_notation (which) sets to ’which’ the value

// of ’xreal::ioflags.notat’ .

static void set_notation (short notat);

// xreal::set_signflag (which) sets to ’which’ the value

// of ’xreal::ioflags.sf’ .

static void set_signflag (short onoff);

// xreal::set_mfwd (which) sets to ’which’ the value

// of ’xreal::ioflags.mfwd’ .

static void set_mfwd (short wd);

// xreal::set_lim (which) sets to ’which’ the value

// of ’xreal::ioflags.lim’ .

static void set_lim (short lim);

// xreal::set_padding (which) sets to ’which’ the value

// of ’xreal::ioflags.padding’ .

static void set_padding (signed char ch);

// xreal::get_notation () returns the current value

// of ’xreal::ioflags.notat’ .

static short get_notation (void);

// xreal::get_signflag () returns the current value

// of ’xreal::ioflags.sf’ .

static short get_signflag (void);

// xreal::get_mfwd () returns the current value

58

// of ’xreal::ioflags.mfwd’ .

static short get_mfwd (void);

// xreal::get_lim () returns the current value

// of ’xreal::ioflags.lim’ .

static short get_lim (void);

// xreal::get_padding () returns the current value

// of ’xreal::ioflags.padding’ .

static signed char get_padding (void);

private:

struct xpr br; /* binary representation */

static struct xoutflags ioflags; /* output flags */

};

// xmatherrcode() returns the current value of the global

// variable ’xErrNo’ (see section

// "Dealing with runtime errors"), if

// this variable is defined.

// Otherwise xmatherrcode() returns -1.

int xmatherrcode ();

// clear_xmatherr() resets to 0 the value of the global

// variable ’xErrNo’ (see section "Dealing with runtime

// errors"), if this variable is defined.

// Otherwise, clear_xmatherr() prints a suitable warning

// on ’cerr’ (standard error device).

void clear_xmatherr ();

// Some useful constants:

// xZERO == 0

// xONE == 1

// xTWO == 2

// xTEN == 10

// xINF == +INF

// x_INF == -INF

// xNAN == Not-A-Number

// xPI == Pi Greek

// xPI2 == Pi / 2

// xPI4 == Pi / 4

// xEE == e (base of natural logarithms)

// xSQRT2 == square root of 2

// xLN2 == natural logarithm of 2

// xLN10 == natural logarithm of 10

// xLOG2_E == base-2 logarithm of e

// xLOG2_10 == base-2 logarithm of 10

59

// xLOG10_E == base-10 logarithm of e

extern const xreal xZERO, xONE, xTWO, xTEN;

extern const xreal xINF, x_INF, xNAN;

extern const xreal xPI, xPI2, xPI4, xEE, xSQRT2;

extern const xreal xLN2, xLN10, xLOG2_E, xLOG2_10, xLOG10_E;

} /* End namespace HPA */

#endif /* _XREAL_H_ */

12 The xcomplex class

The interface of the xcomplex class is contained in the header file xcomplex.h,
whose contents you can find here together with the necessary explanations.

#ifndef _XCOMPLEX_H_

#define _XCOMPLEX_H_

#include <cxpre.h>

#include <iostream>

#include <string>

#include "xreal.h"

using std::istream;

using std::ostream;

using std::string;

namespace HPA {

struct double_complex {

double re, im;

};

struct float_complex {

float re, im;

};

class xcomplex {

// << and >> are used respectively for the output and the

// input of extended precision complex numbers.

// The input operator >> reads a couple of double

// precision numbers and then converts it into

// an extended precision complex number. This can have

// undesirable rounding effects. To avoid them, use the

60

// input function xcomplex::getfrom() (see below).

friend ostream& operator<< (ostream& os, const xcomplex& z);

friend istream& operator>> (istream& is, xcomplex& z);

// +, -, *, / are the usual arithmetic operators

friend xcomplex

operator+ (const xcomplex& z1, const xcomplex& z2);

friend xcomplex

operator- (const xcomplex& z1, const xcomplex& z2);

friend xcomplex

operator* (const xcomplex& z1, const xcomplex& z2);

friend xcomplex

operator/ (const xcomplex& z1, const xcomplex& z2);

// z % n is equal to z * pow (2,n)

friend xcomplex

operator% (const xcomplex& z, int n);

// ==, !=, <=, >=, <, > are the usual comparison operators

friend int

operator== (const xcomplex& z1, const xcomplex& z2);

friend int

operator!= (const xcomplex& z1, const xcomplex& z2);

friend int

operator<= (const xcomplex& z1, const xcomplex& z2);

friend int

operator>= (const xcomplex& z1, const xcomplex& z2);

friend int

operator< (const xcomplex& z1, const xcomplex& z2);

friend int

operator> (const xcomplex& z1, const xcomplex& z2);

// sget (s, n, z) tries to read an extended precision

// complex number from the string ’s’ starting from the

// position ’n’. The retrieved number is converted and

// stored in ’z’. The return value is the number of

// characters composing the decimal representation of this

// number as read from ’s’.

// For example, if s == "12.34+6.7idog" and n == 0,

// then ’z’ is set to 12.34+6.7i and the return value

// is 10.

// If the portion of ’s’ starting from the position ’n’ can

// not be converted to a number, then ’z’ is set to

// xNAN + xNANi and 0 is returned.

// If the exactly converted value would cause overflow in

// the real or/and imaginary part, then the real or/and the

61

// imaginary part of ’z’ are set to xINF or x_INF, according

// to the signs of the correct value.

// If ’n’ is greater or equal to the length of ’s’, then 0

// is returned and ’z’ is set to cxZERO.

friend unsigned long sget (string s, unsigned long startptr,

xcomplex& z);

// bget (buff, z) tries to read an extended precision

// complex number from the buffer pointed to by ’buff’.

// The retrieved number is converted and stored in ’z’.

// The return value is a pointer to the character after

// the last character used in the conversion.

// For example, if ’buff’ is a pointer to the buffer

// "12.34+6.7idog", then ’z’ is set to 12.34+6.7i and

// the return value is a pointer to "dog" (i.e.,

// a pointer to the character ’d’).

// If the initial portion of the string pointed to by ’buff’

// can not be converted to a number, then ’z’ is set to

// xNAN + xNANi and ’buff’ is returned.

// If the exactly converted value would cause overflow

// in the real or/and imaginary part, then the real or/and

// the imaginary part of ’z’ are set to xINF or x_INF,

// according to the signs of the correct value.

// If ’buff’ is NULL (0), then an error message is printed

// on ’cerr’ (standard error device).

friend const char* bget (const char* buff, xcomplex& z);

// rmul (x,z) (here ’x’ is a real number) returns the

// product x * z.

// It is faster than the * operator.

friend xcomplex rmul (const xreal& x, const xcomplex& z);

// After eventually rounding ’z1’ and ’z2’ by recalling

// round() (see below) on them, gdiv(z1, z2) returns

// the quotient of the gaussian division of ’z1’ by ’z2’.

// If you do not know what gaussian division means, probably

// you will never need this function :)

friend xcomplex

gdiv (const xcomplex& z1, const xcomplex& z2);

// After eventually rounding ’z1’ and ’z2’ by recalling

// round() (see below) on them, gmod(z1, z2) returns

// the remainder of the gaussian division of ’z1’ by ’z2’.

// If you do not know what gaussian division means, probably

// you will never need this function :)

friend xcomplex

62

gmod (const xcomplex& z1, const xcomplex& z2);

// idiv() is a wrapper to cxidiv() (see section

// "Extended Precision Complex Arithmetic").

friend xcomplex

idiv (const xcomplex& z1, const xcomplex& z2);

// mod() is a wrapper to cxmod() (see section

// "Extended Precision Complex Arithmetic").

friend xcomplex

mod (const xcomplex& z1, const xcomplex& z2);

// conj() returns the complex conjugate of its argument.

friend xcomplex conj (const xcomplex& z);

// inv() returns the complex reciprocal of its argument:

// inv(z) == 1/z .

friend xcomplex inv (const xcomplex& z);

// swap(z) returns the complex number {z.im, z.re}.

friend xcomplex swap (const xcomplex& z);

// Multiplication by 1i (imaginary unit).

friend xcomplex drot (const xcomplex& z);

// Multiplication by -1i

friend xcomplex rrot (const xcomplex& z);

// abs() returns the absolute value (or modulus) of its

// argument.

// The return value of abs() is then an ’xreal’ number.

friend xreal abs (const xcomplex& z);

// arg(z) returns the phase angle (or argument)

// of the complex number ’z’.

// The return value of arg() is an ’xreal’ number

// in the range [-xPI, xPI) (-xPI is included, xPI is excluded).

// If ’z’ is null, then a domain-error is produced.

friend xreal arg (const xcomplex& z);

// The next six functions have the same

// meanings of the corresponding real functions,

// but they affect both the real

// and the imaginary part of their argument.

friend xcomplex frac (const xcomplex& z);

friend xcomplex trunc (const xcomplex& z);

63

friend xcomplex round (const xcomplex& z);

friend xcomplex ceil (const xcomplex& z);

friend xcomplex floor (const xcomplex& z);

friend xcomplex fix (const xcomplex& z);

// sqr() returns the square of its argument.

friend xcomplex sqr (const xcomplex& z);

// sqrt() returns the principal branch of the square root

// of its argument.

friend xcomplex sqrt (const xcomplex& z);

// root (z,i,n) returns the ’i’th branch of the ’n’th root

// of ’z’. If ’n’ is zero or negative and ’z’ is

// zero, then a bad-exponent error is produced.

friend xcomplex root (const xcomplex& z, int i, int n);

// These functions do not require any comment, except that

// tan() and tanh() yield a domain-error in the same cases

// as cxtan() and cxtanh(), respectively.

friend xcomplex exp (const xcomplex& z);

friend xcomplex exp2 (const xcomplex& z);

friend xcomplex exp10 (const xcomplex& z);

friend xcomplex tan (const xcomplex& z);

friend xcomplex sin (const xcomplex& z);

friend xcomplex cos (const xcomplex& z);

friend xcomplex tanh (const xcomplex& z);

friend xcomplex sinh (const xcomplex& z);

friend xcomplex cosh (const xcomplex& z);

// Natural, base-2 and base-10 logarithm of a complex

// number.

// A null argument results in a domain-error.

// The imaginary part of the return value of log() is always

// in the interval [-xPI,xPI) (-xPI is included, xPI is excluded).

friend xcomplex log (const xcomplex& z);

friend xcomplex log2 (const xcomplex& z);

friend xcomplex log10 (const xcomplex& z);

// log_sqrt(z) returns the natural logarithm of the

// principal branch of the square root of ’z’.

// A null argument results in a domain-error.

// The imaginary part of the return value of log_sqrt()

// is always in the interval [-xPI2,xPI2) (-xPI2 is included, xPI2 is excluded).

friend xcomplex log_sqrt (const xcomplex& z);

64

// These functions are self-explanatory. atan(z)

// yields a domain-error if the real part of ’z’ is null and

// the imaginary part is equal to ’+1’ or ’-1’.

// Similarly, atanh(z) yields a domain-error if the

// imaginary part of ’z’ is null and the

// real part is equal to ’+1’ or ’-1’.

friend xcomplex atan (const xcomplex& z);

friend xcomplex asin (const xcomplex& z);

friend xcomplex acos (const xcomplex& z);

friend xcomplex atanh (const xcomplex& z);

friend xcomplex asinh (const xcomplex& z);

friend xcomplex acosh (const xcomplex& z);

// The return value of pow() is the power of the first

// argument raised to the second one.

// Note that the modulus of the first argument must be

// greater than zero, if the real part of

// the second argument is less or equal than zero, otherwise

// a bad-exponent error is produced.

friend xcomplex pow (const xcomplex& z1, const xcomplex& z2);

public:

// Various constructors. They allow to define

// an extended precision complex number in several ways.

// In addition, they allow for conversions from other

// numeric types.

xcomplex (const struct cxpr* pz = &cxZero);

xcomplex (struct cxpr z);

xcomplex (struct xpr x, struct xpr y = xZero);

xcomplex (xreal x, xreal y = xZERO);

xcomplex (double x, double y = 0.0);

xcomplex (float x, float y = 0.0);

xcomplex (int m, int n = 0);

xcomplex (long m, long n = 0);

xcomplex (unsigned int u, unsigned int v = 0U);

xcomplex (unsigned long u, unsigned long v = 0U);

// This constructor requires a special comment. If

// only the first argument is present, the initial portion

// of the string pointed to by this argument is converted

// into an extended precision complex number, if a

// conversion is possible. If no conversion is possible,

// then the returned number is xNAN + xNANi.

// If the second argument is present and is not null,

// it must be the address of a valid pointer to ’char’.

// Before returning, the constructor will set this pointer

65

// so that it points to the character after the last

// character used in the conversion.

xcomplex (const char* str, char** endptr = 0);

xcomplex (string str);

xcomplex (const xcomplex& z);

// Assignment operators. They do not require

// any explanation with the only exception of ’%=’,

// which combines a ’%’ operation with an assignment.

// So, x %= n is equivalent to x *= pow(2,n) .

xcomplex& operator= (const xcomplex& z);

xcomplex& operator+= (const xcomplex& z);

xcomplex& operator-= (const xcomplex& z);

xcomplex& operator*= (const xcomplex& z);

xcomplex& operator*= (const xreal& x);

xcomplex& operator/= (const xcomplex& z);

xcomplex& operator%= (int n);

// Increment and decrement operators. Both prefixed

// and postfixed versions are defined. These operators

// only act on the real part of their argument.

xcomplex& operator++ ();

xcomplex& operator-- ();

xcomplex& operator++ (int dummy);

xcomplex& operator-- (int dummy);

// Destructor. You will never have to recall it

// explicitly in your code.

~xcomplex (void);

// Integer exponent power. For any extended precision

// complex number ’z’, z(n) is equal to ’z’ raised to ’n’.

xcomplex operator() (int n) const;

// This is the usual unary minus.

xcomplex operator-() const;

// For any extended precision complex number ’z’,

// !z evaluates to 1 when

// ’z’ is null, else it evaluates to 0.

int operator!() const;

// Functions for conversions. z._2dcomplex(), z._2fcomplex(),

// z._2cxpr() and z._2string() convert the extended

// precision complex number ’z’ in a double precision

66

// complex number, in a single precision complex

// number, in a structure of type ’cxpr’, and in a

// string, respectively.

double_complex _2dcomplex () const;

float_complex _2fcomplex() const;

struct cxpr _2cxpr() const;

string _2string() const;

// For any extended precision complex number ’z’,

// z.real() and z.imag() return, respectively, the

// real and the imaginary part of ’z’ in the form

// of an extended precision number.

xreal real () const;

xreal imag () const;

// For any extended precision complex number ’z’,

// z._real() and z._imag() return, respectively, the

// real and the imaginary part of ’z’ in the form

// of a structure of ’xpr’ type.

struct xpr _real () const;

struct xpr _imag () const;

// For any extended precision complex number ’z’,

// z.dreal() and z.dimag() return, respectively, the

// real and the imaginary part of ’z’ in the form

// of a double precision number.

double dreal () const;

double dimag () const;

// For any extended precision complex number ’z’,

// z.freal() and z.fimag() return, respectively, the

// real and the imaginary part of ’z’ in the form

// of a single precision number.

double freal () const;

double fimag () const;

// For any extended precision complex number ’z’,

// z.sreal() and z.simag() return, respectively, the

// real and the imaginary part of ’z’ in the form

// of a string.

string sreal () const;

string simag () const;

// The next functions allow to set (or reset)

// the real and the imaginary part of a complex number.

void real (const xreal& x);

67

void imag (const xreal& x);

void real (struct xpr x);

void imag (struct xpr x);

void real (const struct xpr* px);

void imag (const struct xpr* px);

void real (double x);

void imag (double x);

void real (float x);

void imag (float x);

void real (int n);

void imag (int n);

void real (long n);

void imag (long n);

void real (unsigned int u);

void imag (unsigned int u);

void real (unsigned long u);

void imag (unsigned long u);

void real (const char* str, char** endptr = 0);

void imag (const char* str, char** endptr = 0);

void real (string str);

void imag (string str);

// The member function xcomplex::getfrom() can be used

// to recover an extended precision complex number from an

// input stream. The input stream is passed as argument to

// the function.

// The return value is 0 in case of input error (in case of

// End-Of-File, for example).

// When it starts to process its input, this function drops

// all eventual leading white spaces.

// After reading the first non space character, it continues

// to read from the input stream until it finds a white

// space or reaches the End-Of-File.

// Then it tries to convert into an extended

// precision complex number the (initial portion of the)

// string which has just been read from the input stream.

// If no conversion can be performed, then z.getfrom(is)

// sets ’z’ to the value xNAN + xNANi.

// If the exactly converted value would cause overflow in

// the real or/and in the imaginary part, then the real part

// or/and the imaginary part of ’z’ are set to xINF or x_INF,

// according to the signs of the correct value.

int getfrom (istream& is);

// The member function xcomplex::print() can be used to

// write an extended precision complex number to an output

68

// stream. The output stream is passed to the function as

// first argument. The next three arguments have the same

// meanings of the fields ’notat’, ’sf’

// and ’lim’ of the structure ’xoutflags’, respectively (see section

// "Real Arithmetic").

int print (ostream& os, int sc_not, int sign, int lim) const;

// The function call z.asprint(sc_not, sign, lim) returns

// a buffer of characters with the representation,

// in form of a decimal ASCII string,

// of the extended precision complex number ’z’.

// The arguments ’sc_not’, ’sign’ and ’lim’ are used

// to format the string.

// They have the same meanings of the fields ’notat’, ’sf’

// and ’lim’ of the structure ’xoutflags’, respectively (see section

// "Real Arithmetic").

// The buffer returned by this function is malloc’ed inside

// the function. In case of insufficient memory, the null

// pointer is returned.

char* asprint (int sc_not, int sign, int lim) const;

// The following static functions are used to set

// or get the values of the fields of the structure

// ’xcomplex::ioflags’. This structure is a static member

// variable of the class ’xcomplex’ and it is used by

// the output operator << to know how to format its second

// argument. The meaning of the

// fields of the structure ’xcomplex::ioflags’ is explained

// in the section "Real arithmetic".

// xcomplex::set_fmt (which) sets to ’which’ the value

// of ’xcomplex::ioflags.fmt’ .

static void set_fmt (short format);

// xcomplex::set_notation (which) sets to ’which’ the value

// of ’xcomplex::ioflags.notat’ .

static void set_notation (short notat);

// xcomplex::set_signflag (which) sets to ’which’ the value

// of ’xcomplex::ioflags.sf’ .

static void set_signflag (short onoff);

// xcomplex::set_mfwd (which) sets to ’which’ the value

// of ’xcomplex::ioflags.mfwd’ .

static void set_mfwd (short wd);

69

// xcomplex::set_lim (which) sets to ’which’ the value

// of ’xcomplex::ioflags.lim’ .

static void set_lim (short lim);

// xcomplex::set_padding (which) sets to ’which’ the value

// of ’xcomplex::ioflags.padding’ .

static void set_padding (signed char ch);

// xcomplex::set_ldelim (ch) sets to ’ch’ the value

// of ’xcomplex::ioflags.ldel’ .

static void set_ldelim (signed char ch);

// xcomplex::set_rdelim (ch) sets to ’ch’ the value

// of ’xcomplex::ioflags.rdel’ .

static void set_rdelim (signed char ch);

// xcomplex::get_fmt () returns the current value

// of ’xcomplex::ioflags.fmt’ .

static short get_fmt (void);

// xcomplex::get_notation () returns the current value

// of ’xcomplex::ioflags.notat’ .

static short get_notation (void);

// xcomplex::get_signflag () returns the current value

// of ’xcomplex::ioflags.sf’ .

static short get_signflag (void);

// xcomplex::get_mfwd () returns the current value

// of ’xcomplex::ioflags.mfwd’ .

static short get_mfwd (void);

// xcomplex::get_lim () returns the current value

// of ’xcomplex::ioflags.lim’ .

static short get_lim (void);

// xcomplex::get_padding () returns the current value

// of ’xcomplex::ioflags.padding’ .

static signed char get_padding (void);

// xcomplex::get_ldelim () returns the current value

// of ’xcomplex::ioflags.ldel’ .

static signed char get_ldelim (void);

// xcomplex::get_rdelim () returns the current value

// of ’xcomplex::ioflags.rdel’ .

70

static signed char get_rdelim (void);

private:

struct cxpr br; /* binary representation */

static struct xoutflags ioflags; /* output flags */

};

// Some useful constants:

// cxZERO == 0

// cxONE == 1

// cxI == 1i

extern const xcomplex cxZERO, cxONE, cxI;

} /* End namespace HPA */

#define xi cxI

#define xj cxI

#define _i cxI

#define _j cxI

#endif /* _XCOMPLEX_H_ */

13 Acknowledgments

A big thanks to Daniel A. Atkinson, since without his work the HPA library
would not exist. I have also to thank Aurelio Marinho Jargas <verde (at)
aurelio (dot) net>, author of txt2tags (http://txt2tags.sf.net), a free (GPL’ed)
and wonderful text formatting and conversion tool, which I used extensively in
writing this manual and the web page of the HPA library.

Last but not least, I want to thank all the people till now involved in the
Free Software community, starting from those ones directly involved in the GNU
project (http://www.gnu.org).

14 GNU Free Documentation License

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies

71

http://txt2tags.sf.net
http://www.gnu.org

of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other

functional and useful document "free" in the sense of freedom: to

assure everyone the effective freedom to copy and redistribute it,

with or without modifying it, either commercially or noncommercially.

Secondarily, this License preserves for the author and publisher a way

to get credit for their work, while not being considered responsible

for modifications made by others.

This License is a kind of "copyleft", which means that derivative

works of the document must themselves be free in the same sense. It

complements the GNU General Public License, which is a copyleft

license designed for free software.

We have designed this License in order to use it for manuals for free

software, because free software needs free documentation: a free

program should come with manuals providing the same freedoms that the

software does. But this License is not limited to software manuals;

it can be used for any textual work, regardless of subject matter or

whether it is published as a printed book. We recommend this License

principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that

contains a notice placed by the copyright holder saying it can be

distributed under the terms of this License. Such a notice grants a

world-wide, royalty-free license, unlimited in duration, to use that

work under the conditions stated herein. The "Document", below,

refers to any such manual or work. Any member of the public is a

licensee, and is addressed as "you". You accept the license if you

copy, modify or distribute the work in a way requiring permission

under copyright law.

A "Modified Version" of the Document means any work containing the

Document or a portion of it, either copied verbatim, or with

modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of

the Document that deals exclusively with the relationship of the

publishers or authors of the Document to the Document’s overall

subject (or to related matters) and contains nothing that could fall

72

directly within that overall subject. (Thus, if the Document is in

part a textbook of mathematics, a Secondary Section may not explain

any mathematics.) The relationship could be a matter of historical

connection with the subject or with related matters, or of legal,

commercial, philosophical, ethical or political position regarding

them.

The "Invariant Sections" are certain Secondary Sections whose titles

are designated, as being those of Invariant Sections, in the notice

that says that the Document is released under this License. If a

section does not fit the above definition of Secondary then it is not

allowed to be designated as Invariant. The Document may contain zero

Invariant Sections. If the Document does not identify any Invariant

Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,

as Front-Cover Texts or Back-Cover Texts, in the notice that says that

the Document is released under this License. A Front-Cover Text may

be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,

represented in a format whose specification is available to the

general public, that is suitable for revising the document

straightforwardly with generic text editors or (for images composed of

pixels) generic paint programs or (for drawings) some widely available

drawing editor, and that is suitable for input to text formatters or

for automatic translation to a variety of formats suitable for input

to text formatters. A copy made in an otherwise Transparent file

format whose markup, or absence of markup, has been arranged to thwart

or discourage subsequent modification by readers is not Transparent.

An image format is not Transparent if used for any substantial amount

of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain

ASCII without markup, Texinfo input format, LaTeX input format, SGML

or XML using a publicly available DTD, and standard-conforming simple

HTML, PostScript or PDF designed for human modification. Examples of

transparent image formats include PNG, XCF and JPG. Opaque formats

include proprietary formats that can be read and edited only by

proprietary word processors, SGML or XML for which the DTD and/or

processing tools are not generally available, and the

machine-generated HTML, PostScript or PDF produced by some word

processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,

plus such following pages as are needed to hold, legibly, the material

73

this License requires to appear in the title page. For works in

formats which do not have any title page as such, "Title Page" means

the text near the most prominent appearance of the work’s title,

preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of

the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose

title either is precisely XYZ or contains XYZ in parentheses following

text that translates XYZ in another language. (Here XYZ stands for a

specific section name mentioned below, such as "Acknowledgements",

"Dedications", "Endorsements", or "History".) To "Preserve the Title"

of such a section when you modify the Document means that it remains a

section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which

states that this License applies to the Document. These Warranty

Disclaimers are considered to be included by reference in this

License, but only as regards disclaiming warranties: any other

implication that these Warranty Disclaimers may have is void and has

no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either

commercially or noncommercially, provided that this License, the

copyright notices, and the license notice saying this License applies

to the Document are reproduced in all copies, and that you add no

other conditions whatsoever to those of this License. You may not use

technical measures to obstruct or control the reading or further

copying of the copies you make or distribute. However, you may accept

compensation in exchange for copies. If you distribute a large enough

number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and

you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have

printed covers) of the Document, numbering more than 100, and the

Document’s license notice requires Cover Texts, you must enclose the

copies in covers that carry, clearly and legibly, all these Cover

Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on

74

the back cover. Both covers must also clearly and legibly identify

you as the publisher of these copies. The front cover must present

the full title with all words of the title equally prominent and

visible. You may add other material on the covers in addition.

Copying with changes limited to the covers, as long as they preserve

the title of the Document and satisfy these conditions, can be treated

as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit

legibly, you should put the first ones listed (as many as fit

reasonably) on the actual cover, and continue the rest onto adjacent

pages.

If you publish or distribute Opaque copies of the Document numbering

more than 100, you must either include a machine-readable Transparent

copy along with each Opaque copy, or state in or with each Opaque copy

a computer-network location from which the general network-using

public has access to download using public-standard network protocols

a complete Transparent copy of the Document, free of added material.

If you use the latter option, you must take reasonably prudent steps,

when you begin distribution of Opaque copies in quantity, to ensure

that this Transparent copy will remain thus accessible at the stated

location until at least one year after the last time you distribute an

Opaque copy (directly or through your agents or retailers) of that

edition to the public.

It is requested, but not required, that you contact the authors of the

Document well before redistributing any large number of copies, to

give them a chance to provide you with an updated version of the

Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under

the conditions of sections 2 and 3 above, provided that you release

the Modified Version under precisely this License, with the Modified

Version filling the role of the Document, thus licensing distribution

and modification of the Modified Version to whoever possesses a copy

of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct

from that of the Document, and from those of previous versions

(which should, if there were any, be listed in the History section

of the Document). You may use the same title as a previous version

if the original publisher of that version gives permission.

75

B. List on the Title Page, as authors, one or more persons or entities

responsible for authorship of the modifications in the Modified

Version, together with at least five of the principal authors of the

Document (all of its principal authors, if it has fewer than five),

unless they release you from this requirement.

C. State on the Title page the name of the publisher of the

Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the

terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections

and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add

to it an item stating at least the title, year, new authors, and

publisher of the Modified Version as given on the Title Page. If

there is no section Entitled "History" in the Document, create one

stating the title, year, authors, and publisher of the Document as

given on its Title Page, then add an item describing the Modified

Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for

public access to a Transparent copy of the Document, and likewise

the network locations given in the Document for previous versions

it was based on. These may be placed in the "History" section.

You may omit a network location for a work that was published at

least four years before the Document itself, or if the original

publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications",

Preserve the Title of the section, and preserve in the section all

the substance and tone of each of the contributor acknowledgements

and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,

unaltered in their text and in their titles. Section numbers

or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section

may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements"

or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or

appendices that qualify as Secondary Sections and contain no material

copied from the Document, you may at your option designate some or all

76

of these sections as invariant. To do this, add their titles to the

list of Invariant Sections in the Modified Version’s license notice.

These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains

nothing but endorsements of your Modified Version by various

parties--for example, statements of peer review or that the text has

been approved by an organization as the authoritative definition of a

standard.

You may add a passage of up to five words as a Front-Cover Text, and a

passage of up to 25 words as a Back-Cover Text, to the end of the list

of Cover Texts in the Modified Version. Only one passage of

Front-Cover Text and one of Back-Cover Text may be added by (or

through arrangements made by) any one entity. If the Document already

includes a cover text for the same cover, previously added by you or

by arrangement made by the same entity you are acting on behalf of,

you may not add another; but you may replace the old one, on explicit

permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License

give permission to use their names for publicity for or to assert or

imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this

License, under the terms defined in section 4 above for modified

versions, provided that you include in the combination all of the

Invariant Sections of all of the original documents, unmodified, and

list them all as Invariant Sections of your combined work in its

license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and

multiple identical Invariant Sections may be replaced with a single

copy. If there are multiple Invariant Sections with the same name but

different contents, make the title of each such section unique by

adding at the end of it, in parentheses, the name of the original

author or publisher of that section if known, or else a unique number.

Make the same adjustment to the section titles in the list of

Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"

in the various original documents, forming one section Entitled

"History"; likewise combine any sections Entitled "Acknowledgements",

77

and any sections Entitled "Dedications". You must delete all sections

Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other

documents released under this License, and replace the individual

copies of this License in the various documents with a single copy

that is included in the collection, provided that you follow the rules

of this License for verbatim copying of each of the documents in all

other respects.

You may extract a single document from such a collection, and

distribute it individually under this License, provided you insert a

copy of this License into the extracted document, and follow this

License in all other respects regarding verbatim copying of that

document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate

and independent documents or works, in or on a volume of a storage or

distribution medium, is called an "aggregate" if the copyright

resulting from the compilation is not used to limit the legal rights

of the compilation’s users beyond what the individual works permit.

When the Document is included in an aggregate, this License does not

apply to the other works in the aggregate which are not themselves

derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these

copies of the Document, then if the Document is less than one half of

the entire aggregate, the Document’s Cover Texts may be placed on

covers that bracket the Document within the aggregate, or the

electronic equivalent of covers if the Document is in electronic form.

Otherwise they must appear on printed covers that bracket the whole

aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may

distribute translations of the Document under the terms of section 4.

Replacing Invariant Sections with translations requires special

permission from their copyright holders, but you may include

78

translations of some or all Invariant Sections in addition to the

original versions of these Invariant Sections. You may include a

translation of this License, and all the license notices in the

Document, and any Warranty Disclaimers, provided that you also include

the original English version of this License and the original versions

of those notices and disclaimers. In case of a disagreement between

the translation and the original version of this License or a notice

or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",

"Dedications", or "History", the requirement (section 4) to Preserve

its Title (section 1) will typically require changing the actual

title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document

except as expressly provided under this License. Any attempt

otherwise to copy, modify, sublicense, or distribute it is void, and

will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license

from a particular copyright holder is reinstated (a) provisionally,

unless and until the copyright holder explicitly and finally

terminates your license, and (b) permanently, if the copyright holder

fails to notify you of the violation by some reasonable means prior to

60 days after the cessation.

Moreover, your license from a particular copyright holder is

reinstated permanently if the copyright holder notifies you of the

violation by some reasonable means, this is the first time you have

received notice of violation of this License (for any work) from that

copyright holder, and you cure the violation prior to 30 days after

your receipt of the notice.

Termination of your rights under this section does not terminate the

licenses of parties who have received copies or rights from you under

this License. If your rights have been terminated and not permanently

reinstated, receipt of a copy of some or all of the same material does

not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the

79

GNU Free Documentation License from time to time. Such new versions

will be similar in spirit to the present version, but may differ in

detail to address new problems or concerns. See

http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.

If the Document specifies that a particular numbered version of this

License "or any later version" applies to it, you have the option of

following the terms and conditions either of that specified version or

of any later version that has been published (not as a draft) by the

Free Software Foundation. If the Document does not specify a version

number of this License, you may choose any version ever published (not

as a draft) by the Free Software Foundation. If the Document

specifies that a proxy can decide which future versions of this

License can be used, that proxy’s public statement of acceptance of a

version permanently authorizes you to choose that version for the

Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any

World Wide Web server that publishes copyrightable works and also

provides prominent facilities for anybody to edit those works. A

public wiki that anybody can edit is an example of such a server. A

"Massive Multiauthor Collaboration" (or "MMC") contained in the site

means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0

license published by Creative Commons Corporation, a not-for-profit

corporation with a principal place of business in San Francisco,

California, as well as future copyleft versions of that license

published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in

part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this

License, and if all works that were first published under this License

somewhere other than this MMC, and subsequently incorporated in whole or

in part into the MMC, (1) had no cover texts or invariant sections, and

(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site

under CC-BY-SA on the same site at any time before August 1, 2009,

provided the MMC is eligible for relicensing.

80

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of

the License in the document and put the following copyright and

license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled "GNU

Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,

replace the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the

Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other

combination of the three, merge those two alternatives to suit the

situation.

If your document contains nontrivial examples of program code, we

recommend releasing these examples in parallel under your choice of

free software license, such as the GNU General Public License,

to permit their use in free software.

81

	Summary
	License
	General Technical Comments
	General overview
	Dealing with runtime errors
	Compiling and linking
	Real arithmetic
	Real constants
	Extended Precision Floating Point Arithmetic
	Extended Precision Math Library
	Applications of Extended Precision Arithmetic

	Complex Arithmetic
	Complex constants
	Extended Precision Complex Arithmetic
	Extended Precision Complex Math Library

	The C++ interface
	Compiling and linking with the C++ wrapper
	The xreal class
	The xcomplex class
	Acknowledgments
	GNU Free Documentation License

