
$ESIGN�AND�)MPLEMENTATION�OF�A�(,!�24)�0ROTOTYPE�AT�/.%2!

0IERRE�3IRON

ONERA-CERT
Information Modelling and Processing Department

2 av. E. Belin, BP4025
F-31055 TOULOUSE Cedex

Pierre.Siron@cert.fr

Keywords: HLA, RTI, distributed architecture, time management, security

!"342!#4:� 4HE� INCREASING� DEMANDS� OF� SIMULATIONS� FOR� DESIGNING� AEROSPACE� VEHICLES� NEED� POWERFUL� TOOLS� AND
INFRASTRUCTURES� ALLOWING� REUSABILITY� AND� INTEROPERABILITY� BETWEEN� DISTRIBUTED� COMPONENTS��)N� THIS� PAPER�� WE� DISCUSS

ONGOING� WORK� CARRIED� OUT� AT� /.%2!� �/FFICE� .ATIONAL� D�%TUDES� ET� DE� 2ECHERCHES� !©ROSPATIALES	� WHICH� AIMS� AT

PROVIDING�A�COMMON�REUSABLE� INFRASTRUCTURE� FOR�DISTRIBUTED� SIMULATIONS��-ORE�PRECISELY��WE�DESCRIBE� FIRST� THE�DESIGN

AND� IMPLEMENTATION�OF�A�(,!�COMPLIANT�24)�PROTOTYPE��AS� THE� FIRST� STEP�OF�OUR�PROJECT��7E� THEN�DISCUSS�PRELIMINARY

LESSONS�LEARNT�IN�EXPERIMENTING�OUR�PROTOTYPE��&INALLY��WE�PROPOSE�SEVERAL�ISSUES�FOR�UPGRADING�THIS�FIRST�PROTOTYPE�

���)NTRODUCTION

The DoD has proposed HLA for the next generation of
modelling and simulation projects. ONERA is strongly
linked to the French Ministry of Defense (DGA more
precisely). Therefore we are sharing the need for a generic
distributed simulation architecture, which emphasizes the
interoperability and the reusability of simulations.

ONERA is also involved in aeronautic and spatial studies
and researches. After reading the HLA specifications, we
are convinced that the scope of HLA goes beyond the
Defense sector. For example, we have to simulate new
avionic systems, which are distributed systems, involving
resources sharing problems, reliability, security and real-
time constraints. Is a distributed simulation of such
distributed systems more suitable ? Another point is that
their development implies many companies. The
cooperation of distributed simulations is then a key
problem. To answer these questions, our position is not to
stay and wait for commercial products but to start a first
step: the design and the implementation of a RTI
(RunTime Infrastructure) prototype at ONERA.

���/BJECTIVES

The main objectives of our initiative are the following:

• First of all, to get a better understanding of the HLA
architecture from several points of view. For example,
what kind of difficulties have to be overcome in
designing and implementing the RTI from its
specifications [1]. Another important issue is to
evaluate the underlying programming methodology of
HLA in order to provide relevant support for the

potential users inside ONERA.
• Secondly, to initialize new researches, suggested by

performances issues and/or new simulation paradigms.
We could here apply our skills in distributed systems
and in computer security.

• Finally, to provide a HLA architecture with security
properties, which is an important issue in both the
defense and the civil domains, as soon as several
companies have to cooperate on the same project.

���0ROTOTYPE

����3CHEDULE

A small team was set up to produce a RTI system. The
project started by the end of 1996. A first version was
available in September 1997. A second one was achieved
in May 1998, which is more complete and includes some
optimizations.

The objective is a rapid prototyping, therefore the design
and the implementation must be incremental. We have
selected a reduced set of HLA services, which are enough
to build significative applications, without data
distribution management and without ownership
management. This looks like the Familiarization version
of the RTI [2].

����!SSUMPTIONS

An object design and the C++ language were used for the
RTI code, since the language is not a constraint for the
development of the federates. We used standard protocols,
such as TCP/IP and UDP, for the communications
between the different components. We did not choose a

middleware like CORBA for the same reasons as those
described in [3] (performances, inappropriate client-server
paradigm).

����!�PROTOTYPE�ARCHITECTURE

�������6ARIOUS�COMPONENTS

Our prototype has some original characteristics, in
particular it is built around an architecture of
communicating processes. The RTI is a distributed system
involving two processes, a local one (RTIA) and a global
one (RTIG), and a library (libRTI) linked with each
federate. The RTI architecture is depicted by Figure 1.

RTIA 3

libRTI

Federate 3

RTIA 1

libRTI

Federate 1

(,!�)NTERFACE

RTIA 2

libRTI

Federate 2

5NIX 3OCKET

RTIG WAN

4#0�3OCKET

Figure 1: RTI architecture

The first step of our development concerns a local
network (Ethernet) of Unix (Solaris) workstations (Sun).
One federate and its RTIA process are located on the
same computer. The RTIP runs on another workstation
(the most powerful).

�������4HE�24)!

Each federate process interacts locally with a RTI
Ambassador process (RTIA) through a Unix-domain
socket. The RTIA processes exchange messages over the
network, in particular with the RTIG process, via TCP
(and UDP) sockets, in order to run the various distributed
algorithms associated with the RTI services.

A specific role of the RTIA is to satisfy immediately some
federate requests, while other requests require message
sending. The RTIA manages memory allocation for the
messages files and is always listening to both the federate
and the network (the RTIG). It is never blocked because
the required computation time is reduced.
Various objects are summed up in the figure 2. To
simplify, there is one object for each implemented service
family of the RTI: federation management, declaration
management, object management and time management.
The time management object uses a LBTS management

object (lower bound on time stamp [4]. The root object
reflects the HLA object classes, the interaction classes
(the SOM) and the instances. Files management object
contains files for the various types of messages: Receive
Order or Time Stamp Order. The communication
management object is an abstract class which hides the
used protocols and the needed optimizations.

RTIA

Federations
Management

Declarations
Management

Files
Management

Objects
Management

Time
Management

Root
Object

LBTS
Management

Communications
Management

Unix, TCP, UDP
Multicast Sockets

Figure 2: RTIA structure

�������4HE�24)'

The RTI Gateway (RTIG) is a centralization point in the
architecture. Until now, its role has been to simplify the
implementation of some services. It manages the creation
and destruction of federation executions and the publish-
subscribe data. It plays a key role in message broadcasting
which has been implemented by a multicast approach.
Therefore, when a message is received from a given
RTIA, the RTIG delivers it to the corresponding RTIA,
avoiding a true multicasting.

1

Security ServerFederate

0..n 1

 RTIG

Federations List Sockets Server

Federation

Root Object LBTS Man.

1

1

1

1

use

Figure 3: RTIG structure

Figure 3 shows various objects. The Socket Server object
manages a list of opened sockets (the current connections)
and the communications.

�������4HE�LIB24)�LIBRARY

A service call is simply transformed into the building of a

message (which includes a type and the input parameters),
its sending to the associated RTIA, the waiting from the
response of the RTIA (usually an acknowledgment), and
the presentation of the output parameters.

A tick primitive is added, allowing the execution of the
RTI initiated services (user code associated to
TimeAdvanceGrant, ReflectAttributeValues, etc).

�������$ATATRANSFER�SCENARIO

Figure 4 illustrates the exchanges of message involved by
an UpdateAttributeValues (this is like a data transfer). The
message file is not represented in the right-side RTIA, nor
the delivery condition which depends on the time
management [4]. UAV is the acronym of
UpdateAttributeValues, and RAV refers to
ReflectAttributeValues.

Federate 1 RTIA RTIG RTIA Federate 2

UAV

UAV

ok

UAV

ok
tick

RAV

ok

Figure 4: Data-transfer scenario

���!PPLICATIONS

�����4EST�APPLICATIONS

The first category of applications is test (or toy)
applications. These applications use all the RTI services
which are implemented, they are also significative for the
number of exchanged messages and the consumed
bandwidth.

The first application is a billiard game. There is one main
object class, the ball with position attributes. The
federation is composed of any number of federates, each
federate modellizing and simulating only one ball
instance. It publishes and subscribes to the position
attributes, so that each computer could graphically
represent the current situation. The collisions are
simulated by interactions. This is a time-coordinated
example, with an initial synchronization point.

A sub-class of ball, colored ball, adds a color parameter.
This example helps us to test the inheritance mechanisms.

The second example is a tennis game. This is a partially a
reuse of the ball example. We add a racket class which is
instancied by two new federates. A new interaction is also
defined for the collision between a racket and a ball. A
monitor federate subscribes to the position attributes of
the objects and visualizes the court. The monitor is time
constrained but also time regulating for a more realistic
result.

�����!IR�DEFENSE�APPLICATION

This example comes from the Escadre toolkit. Escadre is a
simulation support environment developed by DGA/CAD
(Centre d'Analyse de Défense). It provides an OO
methodology and a tool box for developing and running
constructive simulations [5]. A typical application [6] is a
fight simulation of aircraft attacking air defense units.
Patrols of aircrafts are equipped with anti-radar missiles.
Air defense units are composed of a command post
supervising multifunction radar devices and surface-to-air
missiles ramps.

We have chosen this problem because it is more
significative and a little more complex. The object classes
are Aircraft, Radar and Missile which are derived from a
Target class. The interactions are Radar Emission,
Destruction, etc. The federates are associated with the
Aircrafts, the Defense Units (which both simulate the
Missiles) and a Monitor like in the previous example.

���#ONCLUSION

�����$IFFICULTIES�AND�OPTIMIZATIONS

The distributed algorithms for the implemented RTI
services were well-known (the time management for
example). There is only some recursive algorithms to take
into account class inheritance.

As a consequence the RTIA and the RTIG processes, and
in the same way the libRTI, are relatively simple. But the
communication structure is still a open problem. An
optimization consists in decreasing the number of
exchanged messages and the amount of data per message.
This implies a precise definition of the message structure
and the use of variable length. We did not have a good
socket encapsulation (only a C library, not a C++ class)
and some optimizations of the TCP ptotocol and of the
RTI prototype were conflicting.

To manage federations, publish-subscribe data, message

multicast, a regret is not to have at disposal a efficient tool
for group management and communication system. For
example the Horus system could also facilitate the
implementation of the causal order option [7].

To conclude, we have now an operational RTI prototype
with significative applications. This strengthens our hope
in HLA, and in particular the definition of a minimal set
of services to perform distributed simulations.

�����/NGOING�WORK

An on-going work is to tackle the security problem of the
distributed simulations. Because we have the code of a
RTI, because we control the overall architecture, we can
add some security mechanisms. This will be detailed in
[8].

�����&UTURE�TRENDS

A first perspective is related to the applications. We are
proceeding to a selection of significative applications at
ONERA.

We do not want to produce a complete or commercial
RTI, our interest is rather in difficult points which
necessitate still some research, for example the Time
Management, and specially the zero-lookahead problem
and the causal order option. This last option could be
useful to improve performances, but we have to study its
impact on the applications.

Another issue is the multi-resolution problem. For
example, in the air defense application, the Defense Unit
is the aggregation of a command post, radars and missile
ramps. What can we do with HLA ? How can we extend it
?

Work remains to be done at the communication level. We
plan to conduct some experiences with an ATM network.
From a software point of view, the connection of
distributed simulations by a WAN could be made by the
connection of various RTIG processes. We could then
evolve a commonly acceptable definition of a gateway.

���2EFERENCES

[1] Department of Defense, "High Level Architecture
Interface Specification, Version 1.3 Draft 7", January
1998.

[2] R. A. Briggs, R. M. Weatherly, R. Richardson, J.
Olszewski, T. Stark, "RTI F.0 integrated product
team", Proceedings of the Spring Simulation

Interoperability Workshop, 1997.

[3] M. Furuichi, M. Mizuno, H. Miyata, M. Miyazawa, S.
Matsumoto, K. Aoyama, "Design and implementation
of experimental HLA-RTI without employing
CORBA", Proceedings of the 15th DIS Workshop,
1996.

[4] Department of Defense, "HLA Time Management
Design Document", Version 1.0, August 1996.

[5] C. Sautereau, "Escadre V4", CAD report, April 1995.

[6] J-L. Igarza, C. Sautereau, P. Annic, E. Berry, D.
Canazzi, "Development of a HLA compliant version
of the French Escadre simulation support environment:
lessons learned and perspectives", Proceedings of the
Spring Simulation Interoperability Workshop, 1998.

[7] R. van Renesse, K. Birman, S. Maffeis, "Horus: a
Flexible Group Communication System",
Communications of the ACM, April 1996.

[8] P. Bieber, J. Cazin, P. Siron, "Security Extensions to
ONERA HLA RTI Prototype", submitted to the Fall
Simulation Interoperability Workshop, 1998.

!UTHOR�"IOGRAPHY

0)%22%� 3)2/.�was graduate from a French engineer
school of computer science in 1980, and received his
doctorate in 1984. Then he is a Research Engineer at
ONERA and he works in parallel and distributed systems
and computer security. He is a member of the Design and
Validation of Computer Systems research unit.

