
My Programming Habits

Matt Wette



Chapter 1: Habits 1

1 Habits

This chapter explains some of my programming habits. I hope it helps to relieve the head-
scratching.

1.1 Modifying Compound Data Types

In general I do not use set-car! or set-cdr!. I do use vector-set! and hashq-set!

1.2 A-Lists Versus Hash Tables

In general I prefer a-lists over hash tables in Scheme because a-lists are Scheme-like. To
update an entry in an alist I will just paste the new entry on the front. For example,

(let ((al ’((foo . 1) (bar . 2) (baz . 3))))

...

(acons ’bar 99 al))

If the values of the a-list are lists and I want to add something to the list I just use cons,
as in the following:

(let ((al ’((foo 1) (bar 2) (baz 3))))

...

(acons ’bar (cons 99 (assq-ref al ’bar)) al)

This modification costs just two cons cells.

1.3 Iteration

For iteration I usually use named-let and often in concert with cond. The order of variable
declarations in my named-let are the result variable, followed by iteration variables in order
of slowest to fastest modification. In the cond I usually evaluate in the order fastest to
slowest modification. Consider the following C code fragment:

res = 0;

for (i = 0; i < ni, i++) {

res += 100*i;

for (j = 0; j < nj, j++) {

res += 10*j;

for (k = 0; k < nk, k++) {

res += k;

}

}

}

In Scheme, I would express this as

(let iter ((res 0) (i 0) (j 0) (k 0))

(cond

((< k nk) (iter (+ res k) i j (1+ k)))

((< j nj) (iter (+ res (* 10 j) i (1+ j) 0))

((< i ni) (iter (+ res (* 100 i) (1+ i) 0 0))

(else res)))



Chapter 1: Habits 2

1.4 The Free Documentation License

The Free Documentation License is included in the Guile Reference Manual. It is included
with the nyacc source as COPYING.DOC.


