Synopsis
X = gf_linsolve('gmres', spmat M, vec b[, int restart][, precond P][,'noisy'][,'res', r][,'maxiter', n])
X = gf_linsolve('cg', spmat M, vec b [, precond P][,'noisy'][,'res', r][,'maxiter', n])
X = gf_linsolve('bicgstab', spmat M, vec b [, precond P][,'noisy'][,'res', r][,'maxiter', n])
{U, cond} = gf_linsolve('lu', spmat M, vec b)
{U, cond} = gf_linsolve('superlu', spmat M, vec b)
{U, cond} = gf_linsolve('mumps', spmat M, vec b)
Description :
Various linear system solvers.
Command list :
X = gf_linsolve('gmres', spmat M, vec b[, int restart][, precond P][,'noisy'][,'res', r][,'maxiter', n])
Solve M.X = b with the generalized minimum residuals method.
Optionally using P as preconditioner. The default value of the restart parameter is 50.
X = gf_linsolve('cg', spmat M, vec b [, precond P][,'noisy'][,'res', r][,'maxiter', n])
Solve M.X = b with the conjugated gradient method.
Optionally using P as preconditioner.
X = gf_linsolve('bicgstab', spmat M, vec b [, precond P][,'noisy'][,'res', r][,'maxiter', n])
Solve M.X = b with the bi-conjugated gradient stabilized method.
Optionally using P as a preconditioner.
{U, cond} = gf_linsolve('lu', spmat M, vec b)
Alias for gf_linsolve(‘superlu’,...){U, cond} = gf_linsolve('superlu', spmat M, vec b)
Solve M.U = b apply the SuperLU solver (sparse LU factorization).
The condition number estimate cond is returned with the solution U.
{U, cond} = gf_linsolve('mumps', spmat M, vec b)
Solve M.U = b using the MUMPS solver.