
The Flying Saucer User's Guide
Getting Started with Flying Saucer

Release R7

July 2007



1.  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  

1.  
2.  
3.  
4.  

2.  
1.  

1.  
2.  
3.  

2.  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  

10.  
11.  
12.  

3.  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
9.  

10.  
3.  

1.  

2.  

Table of Contents

An Introduction to Flying Saucer
What it is
What it does
What you can do with it
Where the Saucer Does not Fly (what it can't do)
License and Dependencies
Requirements for Running and Using Flying Saucer
Setting your Classpath
Sample Applications

The Browser
The About Box
DocBook
SVG

Using Flying Saucer
Important Concepts

NamespaceHandler
UserAgentCallback
ReplacedElementFactory

Basic Usage
Overview
Rendering to a Swing Panel
Loading  DocumentsXML

 Loading and ParsingXML
Managing Hyperlinks
Hovering
Hovering
Scrolling
Scaling Displayed Fonts
Rendering to an Image
Printing
Putting It All Together

Creating  FilesPDF
How do I add custom or specific fonts?
How do I specify fonts for a specific encoding?
How do you control page size?
How do you control page size on  output?PDF
How do you control page margins on  output?PDF
What controls pagination?
What about  bookmarks?PDF
What about embedded ../images? Are ../images downscaled?
Does Flying Saucer support  form components?PDF
How do I control font smoothing (anti-aliasing?)

Flying Saucer Extensions to the  2.1 SpecificationCSS
Table of Extensions

Page  of 2 29



3.  

2.  
4.  

1.  
1.  
2.  
3.  

2.  
5.  

Extensions: using the  Properties-fs-flow-<top|right|bottom|left>

Configuration
The Flying Saucer Configuration File

Override with Second Configuration File
Override with System Properties
Looking up Configuration at Runtime

Logging
About this Document

Page  of 3 29



An Introduction to Flying Saucer

What it is

Flying Saucer is an /CSS , which means it takes XML renderer XML
files as input, applies formatting and styling using , and generatesCSS
a rendered representation of that  as output. The output may goXML
to the screen (in a ), to an image, or to a  file. Because weGUI PDF
believe most people will rely on conventional practices, our main
target for content is  1.0 (strict), an  document formatXHTML XML
that standardizes . However, we accept any well-formed  for rendering as longHTML XML
as  is provided that tells us how to lay it out. In the case of , default stylesheetsCSS XHTML
are provided out of the box and packaged within the library.

Internally, Flying Saucer works with an  document and uses  to determine how toXML CSS
lay it out visually. The rules for layout come from the , and accordingCSS 2.1 specification
to that spec, element nodes and attributes are matched to  selectors, where each selectorCSS
identifies some formatting rules. We can't cover how to use  here—it's a long andCSS
complex specification—but there are many good books available, and tutorials on the web.
Check out the  for a starting point.W3Schools  TutorialCSS

What it does

Flying Saucer takes  and  as input (where the  might beXML CSS CSS
embedded in the document, or linked from it) and generates rendered
content. Our current major output formats are in a  interface (aGUI
Swing JPanel) and in ; we can also render to image formats, e.g.PDF
render the page and save as an image. There is experimental support
for output to  containers.SWT

If rendering to a , hyperlinks work so you can navigate between pages. As with ,GUI HTML
you can also render forms, capture output, and create interactive applications. In a ,GUI
Flying Saucer provides a  view of the output; we cannot replace a text area, say, orread-only
Swing's  or . However, for static content, or content created by you,JEditorPane JTextPane

Flying Saucer can be used for help documents, tutorials, books, splash screens, presentations,
and much more.

We can also render to . For , the layout rules come from the . The difference isPDF PDF CSS
the rendered output uses the  library to generate . Note that Flying Saucer supportsiText PDF
media types for , allowing you to distinguish between screen and print media, forCSS
example.

Last, we have utility classes to render output to an image file. With this, you could use XML
and  to layout printable content—for example, a flyer, a poster, business cards, etc.—andCSS
save them as ../images you can print out or email. It's also a nice way to create thumbnail or

Page  of 4 29



reduced-size ../images of pages.

What you can do with it

Flying Saucer can be used for any Java application that requires some
sort of styled text, style-based layout, and for content that needs to
look good in a , on the Web, or in print. This can be as simple asGUI
a chat program or as complicated as a complete ebook reader with
dynamic stylesheets. Flying Saucer is very forward-thinking and
designed to be a part of the next generation of applications that
combine rich desktop clients with web content. Some examples of application types are:

chat programs
online music stores
a Gutenberg eBook reader
a distributed dictionary application
Sherlock style map and movie search
Konfabulator and Dashboard components
an  readerRSS
a Friendster client
an eBay client
a splash screen
an about box
a helpfile viewer
a javadoc viewer
report generation and viewing
a stock ticker / weather reporter

Where the Saucer Does not Fly (what it can't do)

Being honorable people, we must admit what Flying Saucer cannot do for you. This list
applies to the current release when this document was written, R7; when in doubt, please
contact us on our mailing list.

Limitations:

Resource loading is single-threaded and occurs inline with layout.
Support for  is weaker than +CSS (for example, not allXHTML XML
No support for legacy  (although there are several open sourceHTML
Swing printing is supported, but quality is lacking. Ask on the
No support for incremental layout (applies to screen media only).
It cannot be used for user-editable content; output is read-only.
HTML plugins, like applets, Flash programs, etc. are not supported. However, these
could potentially be addressed using replaced element content (such as we use for 

 forms), at least for Java applets.HTML
Scripting (e.g. JavaScript) is not supported. We ignore script tags.
Dynamic changes to the content requires a reload of the document (quick, but

Page  of 5 29



noticeable), that is, you can't dynamically change the  and see results live.DOM
Most  callbacks used in JavaScript are not yet implemented (onLoad, onClick,DOM
onBlur, etc.).

These limitations all have a pragmatic origin. Josh Marinacci, the
founder of and original lead developer for the Flying Saucer project,
realized that writing a fully capable  browser component (likeHTML
Firefox's Gecko engine) could take many man-years of development.
But if one focused on well-formed /XHTML only, and stuck toXML
the  spec, you could cover most of the useful stuff you want to doCSS

with a rendering engine, and do it in a reasonable amount of time. So it's not impossible to
add scripting, , plugins to Flying Saucer, we've just deferred this until someone hasDHTML
the time and energy to get it to work—that way, we stay focused on the goal, which is pure 

 2.1 support for well-formed .CSS XML

Of course, you can help fix any of these things. Contributors welcome!

License and Dependencies

Flying Saucer itself is licensed under the GNU Lesser General Public
. You can use Flying Saucer in any way you want as long asLicense

you respect the terms of the license. A copy of the  is providedLGPL
under .txt in our distribution.LGPL

Flying Saucer uses a couple of  packages to get the job done. AFOSS
list of these, along with the license they each have, is listed in the  file in ourLICENSE
distribution.

Requirements for Running and Using Flying Saucer

Flying Saucer is built and tested on Java 1.4 and has some dependencies on libraries (such as 
 logging) only available in 1.4. In principle, you should be able to backport it to 1.3 (orJDK

earlier?), but we've not tried that and don't maintain a 1.3 branch.

Basic requirements:

Java Runtime Environment 1.4 or above (or  of course)JDK
core-renderer.jar (our distribution)
iText (also at iText PDF
Ant if you want to build from source
Minium antialiasing: Minimum is an anti-aliasing library donated by Julian Scheid.
We distribute the  for this; don't know of it being posted elsewhere. This is onlyJAR
necessary if you want to use this anti-aliasing approach; the Browser demo shows it in
practice, and you may like it better than the Java anti-aliasing support, especially in
Java 1.4.

Page  of 6 29



iText is not necessary at runtime if you are not generating PDFs, but is necessary for the
build to satisfy compile-time dependencies. We include a version with our distribution; you
should be able to use a release directly from the  project, as long as the  is the same.iText API

Flying Saucer includes its own  parser. There is currently no adaptor for externalCSS
parsers—we didn't find any high-quality, actively-maintained ones. However, such an
adapter did exists—we used to use the SteadyState  parser, so in principle, a different CSS

 parser could be used.CSS

Most of Flying Saucer does not rely on advanced Java features. It should be usable on
alternate Java implementations, such as  Classpath or Apache Harmony, but this hasn'tGNU
been tested. You do need solid Java2D (including font) support.

Setting your Classpath

You only need the  and the  in your core-renderer.jar cssparser-0-9-4-fs.jar

. If you want  output, add . If you wantCLASSPATH PDF itext-paulo-155.jar

anti-aliasing using the Minium toolkit, add . That is all you need for your ownminium.jar

programs. You also need an  parser to be in your classpath, but this already included inXML
recent versions of the . To run the browser or use any of it's support classes you will needJRE
the  file.browser.jar

To summarize, the easiest  to set is:CLASSPATH

core-renderer.jar (required)
itext-paulo-155.jar

minium.jar

Sample Applications

The Browser
The About Box
DocBook
SVG

The Browser

The Flying Saucer Browser demo, located under  is  intended to be a realdemos/browser not
web browser—there are lots of things it can't do. But it can show you how to use Flying
Saucer in a "real" Java application.

The Browser hosts the FS renderer (  class) inside a scrollpane ( XHTMLPanel FSScrollPane

class) inside an application . You can move between pages using hyperlinks, menuJFrame

items (see the list under the Demo menu), via File/Open File, or by entering a  in theURL
location bar. URLs in the location bar have to either  format, or the standardhttp://

nonsense format for local files, if you aren't running in a sandbox. If you want to browse
open files, use File/Open File to open one first, then use the same  format to type inURL
other file names.

Page  of 7 29



You can use Alt-N/Alt-P to navigate between the demo pages, packaged along with the
browser. On the View menu, there are shortcuts to change the text size (increase or
decrease). On the Debug menu, you can control anti-aliasing, turn page box outlines on or
off, or use a simple  inspector to view  properties for the page. The Help menu hasDOM CSS
a link to load this document, the Flying Saucer User's Guide.

If you are running outside of a sandbox, you can also enter a directory name in the location
bar, and a simple page with the directory contents will show up. It's not a complete file
browser, but should give you and idea of how to create  on the fly.XHTML

If you have downloaded the source, you can run the Browser by typing

  ant browser

This will compile any changes in the core renderer and Browser, rebuild the jars, and launch
the Browser. If you want to change any standard configuration settings when running the
Browser, please see the section on our .configuration system

The About Box

The About Box demo shows how to open a single dialog box with auto-scrolling enabled—to
gradually show the user the information about your app.

The AboutBox is a prefab component which displays an  document andXHTML
automatically scrolls it. It is primarily useful for Help->About menu items and splash
screens.

Here is an example of adding an about box to a menu item's action listener.

import org.xhtmlrenderer.demo.aboutbox.AboutBox;
.
.
.
.
.
.
JMenuItem about = new JMenuItem("About...");
about.addActionListener(new ActionListener() {
  public void actionPerformed(ActionEvent evt) {
  AboutBox ab = new AboutBox
    (
    "About Flying Saucer",
    "demos/about/index.xhtml"
    );
    ab.setVisible(true);
  }
});

If you have downloaded the source, you can run the About Box by typing

  ant aboutbox

This will compile any changes in the core renderer and About Box, rebuild the jars, and

Page  of 8 29



launch the About Box demo. If you want to change any standard configuration settings when
running the About Box, please see the section on our .configuration system

DocBook

Our DocBook demo, under , shows how a DocBook  document can bedemos/docbook XML
rendered using only , without converting it to  first. This relies on an  whichCSS XHTML CSS
we've packaged here—there are three different versions available in our source tree; your
mileage may vary with each one, as there is really no active work in this direction.

To run the demo once you have our sources downloaded, just use our Ant build file and type 
. The DocBook sample (taken from the jEdit User's Guide) is rendered in aant docbook

single JFrame. The demo doesn't actually demonstrate anything new—the DocBook contains
the reference to the  of choice (in the demo, wysiwygdocbook1.01).CSS

If you have downloaded the source, you can run the DocBook demo by typing

  ant docbook

This will compile any changes in the core renderer and DocBook demo, rebuild the jars, and
launch the demo. If you want to change any standard configuration settings when running the
DocBook demo, please see the section on our .configuration system

Interestingly—in this case there is nothing special to be done, no special APIs in Flying
Saucer to call. The DocBook  for the jEdit document just has a link to the  requiredXML CSS
to render it, like this:

That's it. The rest is pure , following DocBook conventions. You just need to load this XML
 into a panel using  and you're done.XML setDocument()

SVG

Our  demo, , shows how  references can be embedded in an  pageSVG ant svg SVG XHTML
and rendered as ../images at runtime. This demonstrates how a 

 can swap any  content in theorg.xhtmlrenderer.extend.ReplacedElementFactory XML
Document with another visual element—in this case, the  elements are parsed using the SVG

  library and returned as panels to the renderer. You could try usingSVGSalamander SVG
another Java  library, such as Batik—but the more important principle is that you are inSVG
control of how the elements are rendered to the screen. The code is available in .demos/svg

If you have downloaded the source, you can run the  demo by typingSVG

  ant svg

This will compile any changes in the core renderer and  demo, rebuild the jars, andSVG
launch the demo. If you want to change any standard configuration settings when running the

 demo, please see the section on our .SVG configuration system

Page  of 9 29



Using Flying Saucer

Important Concepts

The Flying Saucer library is meant to be fairly easy to use, which means you shouldn't have
to do much to integrate it into your applications. This means that a number of aspects of the
library are configured for you out-of-the-box; some other things you can modify via our 

. However, there are some characteristics of the library that you can'tconfiguration system
modify via configuration, but which you may want to modify for advanced use of the
renderer.

NamespaceHandler

The  interface provides the renderer withorg.xhtmlrenderer.extend.NamespaceHandler

knowledge about a document that is specific to that document type. The renderer just knows
that its input is ; it doesn't know how that particular  format might include XML XML CSS
styles, for example (XML and  have different mechanisms for that).XHTML

Flying Saucer includes pre-built implementations of  for plain , NamespaceHandler XML
, and a special version for converting legacy  element styling into valid XHTML HTML CSS

styles.

You can provide a  instance to a  during calls to NamespaceHandler BasicPanel

, or you can set it via the  that the panel uses duringsetDocument() SharedContext

rendering. By default, the  will use an , which meansXHTMLPanel XhtmlNamespaceHandler

you can load  without extra works.XHTML

import org.mycode.MyNamespaceHandler;
.
.
.
XHTMLPanel panel = new XHTMLPanel();
NamespaceHandler nsh = new MyNamespaceHandler;
panel.setDocument(new File("index.html"), nsh);

or

import org.mycode.MyNamespaceHandler;
.
.
.
XHTMLPanel panel = new XHTMLPanel();
NamespaceHandler nsh = new MyNamespaceHandler;
panel.getSharedContext().setNamespaceHandler(nsh);
panel.setDocument(new File("index.html"));

Page  of 10 29



UserAgentCallback

The  interface allows some control overorg.xhtmlrenderer.extend.UserAgentCallback

the "user agent", a concept introduced by the  to abstract the notion of the "agent"W3C
responsible for rendering content to a user; you can think of the "user agent" in Flying Saucer
as the UI component rendering a document.

In Flying Saucer, the  is used by the library for retrieving , UserAgentCallback XML CSS
and image data, and for resolving URIs and base URIs, among other things. For example,
this means that when the library encounters a reference to a  file, there is no built-inCSS
knowledge of how to retrieve that; the user agent is asked to retrieve the  using the .CSS URI
The user agent can then look in a local cache, in-memory, or just retrieve it over the network.

The library includes a simple  called  which provides for very basicUAC NaiveUserAgent

caching of image resources, and resolution of relative URIs. You will probably want to write
your own in order to optimize image loading and caching,  resource loading (orXML
handling specialized  sources) and  loading. You may also code handling forXML CSS
custom URIs—the demo Browser application uses a  prefix "demoNav://" to manageURI
navigation between demo pages, for example.

You can provide a new  instance in a constructor for the .UserAgentCallback BasicPanel

Note that for  output, if you are going to use your own , you should take a look at PDF UAC
 in the source codebase; this class has someorg.xhtmlrenderer.pdf.ITextUserAgent

special handling for ../images to ready them for  output.PDF

ReplacedElementFactory

The  provides -elementorg.xhtmlrenderer.extend.ReplacedElementFactory XML
replacement during the layout and render cycle. The most obvious use for this is for elements
that point to content which is not itself part of the document, like ../images; with just an 

 element, the library has no way to actually render an image (or an icon, or whatever).<img>

To do this, it uses a , which resolves the  to, for example, an ReplacedElementFactory <img>

, and returns this (wrapped in an interface) as a pre-sized component that theImageIcon

library can render in-place. In our  demo, this same technique is used to render specific SVG
 elements referencing  data files as ../images in the document. It is also used to<object> SVG

render  form elements as Swing components when using the .XHTML XHTMLPanel

For Swing (JPanel) output and for  output, there are already ReplacedElementFactoriesPDF
supplied for you. If you want to supply your own, you can do this by accessing the
SharedContext for the panel or  renderer. For example, in the  demo, we use aPDF SVG
"chained"  which implements a chain of responsibility for multiple REFs, asREF

ChainedReplacedElementFactory cef = new ChainedReplacedElementFactory();
cef.addFactory(new SwingReplacedElementFactory());
cef.addFactory(new SVGSalamanderReplacedElementFactory());
final XHTMLPanel panel = new XHTMLPanel();
panel.getSharedContext().setReplacedElementFactory(cef);

If you code your own , note that this class will be called for each element in theREF

Page  of 11 29



document—it needs to be relatively lightweight and implement caching intelligently.

Basic Usage

Overview
Rendering to a Swing Panel
Loading  DocumentsXML

 Loading and ParsingXML
Managing Hyperlinks
Hovering
Hovering
Scrolling
Scaling Displayed Fonts
Rendering to an Image
Printing
Putting It All Together

Overview

Flying Saucer is meant to be easy to get started with. Make sure you set your classpath
before continuing. To make life easier for our end-users, we have created a special Java
package, , which contains classes you can use to get up andorg.xhtmlrenderer.simple

running without any hassle.

In addition, in a separate branch of our source tree, we created some sample single-class Java
programs to show different uses of Flying Saucer.

To understand where to start, you have to look at how Flying Saucer works. The input is a 
 Document, or a Uniform Resource Identifier (URL) or Uniform Resource LocatorDOM

(URI) that points to a . You can provide this  Document instance directly (usingDOM DOM
an  parser), or you can provide one of several identifiers (URI, , File, etc.). ThatXML URI
Document must be well-formed . The document is loaded and elements are matchedXML
against the  provided by the document, either linked or inline. For , we haveCSS XHTML
specifications for how  is linked or embedded—as linked stylesheets, as inline styles,CSS
and as style attributes. For , we support linked stylesheets via the XML xml-stylesheet

processing instruction (see the  for the DocBook demo for an example).XML

Once we've matched , we run through a layout phase, where we calculate the size andCSS
position, as well as display attributes, of all visible elements. The layout tree is then used to
render to some output sink calculations . The standard output sink is a Swing JPanel
subclass we call , or its extended (and moreorg.xhtmlrenderer.swing.BasicPanel

powerful) child, .XHTMLPanel

Page  of 12 29



Rendering to a Swing Panel

In fact, to make it really easy, both , and its child org.xhtmlrenderer.swing.BasicPanel

, allow you to set the document in one call. In fact,org.xhtmlrenderer.simple.XHTMLPanel

to display a page in a Swing , the code is very simple. Take a look at out our JFrame

 example in the  directory. The important stuff happens in the JPanelRender demos/samples

 method.run()

private void run(String[] args) throws Exception {
    loadAndCheckArgs(args);

    // Create a JPanel subclass to render the page
    XHTMLPanel panel = new XHTMLPanel();

    // Set the XHTML document to render. We use the simplest form
    // of the API call, which uses a File reference. There
    // are a variety of overloads for setDocument().
    panel.setDocument(new File(fileName));

    // Put our panel in a scrolling pane. You can use
    // a regular JScrollPane here, or our FSScrollPane.
    // FSScrollPane is already set up to move the correct
    // amount when scrolling 1 line or 1 page
    FSScrollPane scroll = new FSScrollPane(panel);
    JFrame frame = new JFrame("Flying Saucer Single Page Demo");
    frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
    frame.getContentPane().add(scroll);
    frame.pack();
    frame.setSize(1024, 768);
    frame.setVisible(true);
}

The basic process is:

create a  or  instanceBasicPanel XHTMLPanel

add it to a Swing  or an  (unless your pages will fit withoutJScrollPane FSScrollPane

scrolling)
add the panel to a container—a , another panel, etc.JFrame

call  to load and render your documentsetDocument()

That's it! You can now display  and  in your Swing applications.XHTML CSS

What about  or alternate  toolkits for Java? Our basic rendering routine writes to aAWT GUI
"renderer". Right now we support the concept of rendering to an . We have twooutput device
output device implementations: one for Java2D (essentially a canvas, or Graphics2D
instance) and the other for  (using iText). When we render to a Swing panel, we are stillPDF
painting on a Java2D canvas, so in principle, you should be able to port this rendering to
other 2D output surfaces. If you do, we'd like to hear from you! Just note there is no explicit
technical limitation that forces you to use Swing—it's just easy, and easy to make it look
good.

Note: we already have an experimental renderer for  contributed by one of ourSWT

Page  of 13 29



users—contact us on the mailing list for more details. We expect to include this as an
optional component in an upcoming release.

Loading  DocumentsXML

XML (and ) is normally loaded for you by Flying Saucer on demand when youXHTML
specify a , , or a File. The relevant methods to do this in  are:URI URL XHTMLPanel

void setDocument(String uri);
void setDocument(File file);
void setDocument(InputStream is);

You can also pass in a   instance which you have instantiatedDOM org.w3c.dom.Document

yourself, as

void setDocument(Document dom);

Last, there is a convenience method to provide a Java String that contains well-formed XML
or :XHTML

void setDocumentFromString(String xmlContent);

Note that this last method is not the same as , where the singlesetDocument(String uri)

parameter represents the location of the document you want to load.

XML Loading and Parsing

If you don't provide a   instance yourself, parsing of  documents isDOM Document XML
delegated to a class called . You will probably never useorg.xhtmlrenderer.XMLResource

this class yourself. However, you should realize that the  parser which XML XMLResource

uses to load a document defaults to the  parser shipping with your version of the ;XML JDK
this parser implementation has varied over time, and some versions may have bugs. You can
specify another parser to use instead of the  default by using our .JDK configuration system
Parsers must be instances of . Alternately, you can write your own org.xml.sax.XMLReader

 (described above) to direct how  is loaded by implementing the UserAgentCallback XML
 method.getXMLResource()

In configuration, there are a number of properties which control the  parser used byXML
Flying Saucer and which configure it. The property names all start with  and include:xr.load

Property Name Values Purpose

xr.load.xml-reader

Fully-qualified
classname of
the XMLReader
instance to use,
or 'default'

The  instance to use to parse .XMLReader XML
Defaults to "default" (without quotes).

xr.load.configure-features true, false

Specifies whether  should even tryXMLResource

to set parser features. Not all features are
recognized by all parsers, and some parsers will

Page  of 14 29



throw exceptions if features are changed. Use
with care. Defaults to false.

xr.load.validation true, false Whether the parser should validate  againstXML
a . Defaults to false.DTD

xr.load.string-interning true, false Whether to ask the parser to intern String
instances for better performance.

xr.load.namespaces true, false Whether the parser should providing namespace
info during parsing.

The parser is loaded and configured on first use. Normally, we find the default  JDK XML
parser to work just fine.

You may want to alter the  instance used if you need a special parserXMLReader

implementation, for example one which  legacy  and converts it to .cleans HTML XHTML
Both  or  provide this ability. You might also try a parser which is faster (orTagSoup JTidy
claims to be), like . We redistribute these parsers along with our source distributionPiccolo
for you to try out. If you use a "tidying" parser, we recommend you test the parser output to
make sure it does what you expect; we've been disappointed with some of them (not naming
names), and poor-quality , even if well-formed, can cause problems of its own.XHTML

You can also do more advanced tricks, like providing an  that converts betweenXMLReader

input formats, for example, an  dialect (for which you have no ) to  using XML CSS XHTML
, or from a text-markup like  to . You're basically limited by the featuresXSL Xilize XHTML

available in the Java  parser interfaces, which gives you a lot of room to work with.XML

For more information on the ins and outs of  parsing, you might take a look at ElliotXML
Rusty Harold's work on . His book  is available to readhis website Processing  in JavaXML
for free online, and we ourselves are very grateful to him for that.

Managing Hyperlinks

XHTMLPanel supports callbacks for hyperlinks using a 
 which extends org.xhtmlrenderer.swing.LinkListener

. A  monitors mouse eventsorg.xhtmlrenderer.swing.FSMouseListener LinkListener

and calls back throught the panel (  ) to locate any boxes at that location.BasicPanel

Different mouse events are then used to change cursor or process a click event if the box is a
link. When a link is clicked, the panel's  is called tosetDocumentRelative(String uri)

have the panel load the document (relative to the current base , if necessary).URL

The standard  uses methods in  to find Box instances (Elements inLinkListener BasicPanel

the Document become zero to many Boxes on-screen).

The  property  (values true, false) causes the configuration property xr.use.listeners

 to automatically create and store a . This means that an XHTMLPanel LinkListener

 is already enabled for mouse events and for hyperlink navigation. You canXHTMLPanel

remove the standard  and create your own. In our Browser demo, this isLinkListener

exactly what we do: our custom  looks for links with an href starting withLinkListener

"demoNav", and, in that case, calls back to the Browser to go to the prior or next demo page.

Page  of 15 29



This lets us add new demo pages which contain, "demoNav:back" or "demoNav:forward"
links, without having to hard-code the relative URLs between demo pages. Pages can be
reordered without breaking navigation. To change the listeners being used (and add your
own) using the  and BasicPanel.addMouseTrackingListener(FSMouseListener)

 methods.BasicPanel.removeMouseTrackingListener(FSMouseListener)

You might use a custom  for special tasks during mouse events—for example,LinkListener

to show the current  in the application status bar, or to handle specific URLs with aURL
custom loader (like  or  URLs).HTTPS FTP

Hovering

Like support for hyperlinks,  also supports hovering over elements. The  XHTMLPanel CSS
 pseudo-selector assigns properties to an element where the mouse is currently:hover

hovering. The  class, like the org.xhtmlrenderer.swing.HoverListener LinkListener

class, is an  that tracks mouse movements, and, when entering or leaving aFSMouseListener

box, calls back to the render routines to update the box's style on screen.

Like , the  property , if true, causesLinkListener configuration property xr.use.listeners

the  to automatically create and manage its own  instance. YouXHTMLPanel HoverListener

can change the listeners being used (and add your own) using the 
 and BasicPanel.addMouseTrackingListener(FSMouseListener)

 methods.BasicPanel.removeMouseTrackingListener(FSMouseListener)

Hovering

XHTMLPanel also supports changes to the mouse cursor when moving over elements. The 
  property can be assigned to an rule to control which cursor is displayed whenCSS cursor

the selector matches; this would be most useful when hovering. Since a default cursor style is
assigned to all elements, you actually only need to assign a custom cursor on :hover.

div.curPointer:hover {
  cursor: pointer;
}

The  class, like the  class, is an org.xhtmlrenderer.swing.CursorListener LinkListener

 that tracks mouse movements, and, when entering or leaving a box, callsFSMouseListener

back to the render routines to update the box's cursor on screen.

Like , the  property , if true, causesLinkListener configuration property xr.use.listeners

the  to automatically create and manage its own  instance. YouXHTMLPanel CursorListener

can change the listeners being used (and add your own) using the 
 and BasicPanel.addMouseTrackingListener(FSMouseListener)

 methods.BasicPanel.removeMouseTrackingListener(FSMouseListener)

Page  of 16 29



Scrolling

When working within Swing, the  classorg.xhtmlrenderer.simple.FSScrollPane

provides some extended support for scrolling a document. The scroll pane has keyboard
mappings for jump to top, jump to bottom, and scrolling up or down one line or one page.
The amount of the scrolling is based on the current viewport size or an estimate of the
current line height.

Scaling Displayed Fonts

XHTMLPanel has built-in support for scaling on-screen fonts, which means you can adjust the
size of the displayed fonts, effectively overriding the  font-size properties. To scale, youCSS
must provide a font scaling factor, which is the % adjustment to apply to the font size. The
default is a factor of 1.2, or 20% with each increment or decrement. You can specify an
upper and lower boundary for the scaling as well.

To set the font scaling factor, use  on .void setFontScalingFactor(float) XHTMLPanel

To increment the font by the current scaling factor, call ; tovoid incrementFontSize()

decrement, call . To reset to the -specified font sizes, use void decrementFontSize() CSS
. All of these will trigger a reload of the document; the current fontvoid resetFontSize()

scale will be applied automatically, however, when new documents are loaded. The Browser
demo shows how you can associate this with a  class so that the user can scale up orAction

down to their liking.

To set a maximum font scale, call , and to set the minimum,void setMaxFontScale(float)

call .void setMinFontScale(float)

Rendering to an Image

Rendering to a Image and Saving to a File

You can render from a document directly to an image format of your choice using 
. To use , just call org.xhtmlrenderer.simple.ImageRenderer ImageRenderer

, or one of the overloaded versions ofImageRenderer.renderToImage(url, path, width)

the method. You must specify either a width or a width and a height for the image if you
like; if height is not specified, it's determined based on the content of the document. 

 creates the document, writes it out to the given path, and returns a renderToImage()

 which you can further manipulate—for example, scale andjava.awt.image.BufferedImage

re-save or save in multiple image formats. Here's a simple sample rendering the contents of
the  homepage:http://www.w3c.org

String address = "http://www.w3.org/";

// render
try {
  BufferedImage buff = null;
  buff = Graphics2DRenderer.renderToImage(address, "w3c-homepage.png", 1024);
} catch (IOException e) {

Page  of 17 29



  e.printStackTrace();
}

That's it. You can use Java's  class to write the image out in different formats; itImageIO

supports writing most image formats you would want to use. Using , you canBufferedImage

also manipulate (scale, rotate, transform) the ../images you create.

Advanced Rendering to an Image

For more advanced control over image output, you should use the 
 class. As a matter of fact, the org.xhtmlrenderer.swing.Java2DRenderer

, described above, uses  toorg.xhtmlrenderer.simple.ImageRenderer Jave2DRenderer

prepare ../images before writing them to a file.

//Generate an image from a file:
File f = new File("source.xhtml");
int width = 1024;
int height = 1024;

// can specify width alone, or width + height
// constructing does not render; not until getImage() is called
Java2DRenderer renderer = new Java2DRenderer(f, w, h);

// this renders and returns the image, which is stored in the J2R; will not
// be re-rendered, calls to getImage() return the same instance
BufferedImage img = renderer.getImage();

// write it out, full size, PNG
// FSImageWriter instance can be reused for different ../images,
// defaults to PNG
FSImageWriter imageWriter = new FSImageWriter();
imageWriter.write(image, "x-full.png");

// write out as uncompressed JPEG (the 1f parameter)
// use convenience factory method; you can actually just pass in
// the type of image as a string but then you have to know how
// to make the compression calls without causing exceptions
// to be thrown :)
imageWriter = FSImageWriter.newJpegWriter(1f);
imageWriter.write(../images, "nc.jpg");

// now compress it; this is using ImageIO utilities
// which are documented elsewhere
imageWriter = FSImageWriter.newJpegWriter(0.75f);
imageWriter.write(../images, "threeqtr.jpg");

// we can use the same writer, but at a different compression
imageWriter.setWriteCompressionQuality(0.9f);
imageWriter.write(../images, "ninety.jpg");

// now scale it
// ScalingOptions lets us control some quality options and pass in
// rendering hints
ScalingOptions scalingOptions = new ScalingOptions(
  BufferedImage.TYPE_INT_ARGB,
  DownscaleQuality.LOW_QUALITY,
  RenderingHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR
);

Page  of 18 29



// target size--you can reuse the options instance for different sizes
scalingOptions.setTargetDimensions(new Dimension(250, 250));
Image scaled = ImageUtil.getScaledInstance(scalingOptions, image);

// we can also scale multiple dimensions at once (well, not at once, but...)
// be careful because quality settings in the options instance can affect
// performance drastically
List dimensions = new ArrayList();
dimensions.add(new Dimension(100, 100));
dimensions.add(new Dimension(250, 250));
dimensions.add(new Dimension(500, 500));
dimensions.add(new Dimension(750, 750));
List ../images = ImageUtil.scaleMultiple(scalingOptions, image, dimensions);

Notes:

Generating ../images can take up chunks of memory, and chunks of disk space.
Remember that the larger you size the image output (width, height), what image
format you use (lossy, lossless) and whether and how much compression is used all
affect the size of image in memory and on disk. In particular

You will start by creating the image at a certain size (in  ).Java2DRenderer

You can control some aspects of image quality and internal (Java2D) rendering
using rendering hints on the renderer; use . These hintssetRenderingHints()

are documented in the Java2D APIs.
You can control what type of image the Java2DRenderer creates in memory by
overriding the  method in the class.createBufferedImage()

To rescale the image, you can use Java2D APIs, or use our 
 utility class. There are some examples in theorg.xhtmlrenderer.util.ImageUtil

code block above.  supports several different scaling algorithms which varyImageUtil

in speed and quality. These algorithms are well-documented if you look for info on the
topic in Java2D forums. You can control scaling to some degree using the 

 class as a parameter to the relevantorg.xhtmlrenderer.util.ScalingOptions

methods in .ImageUtil

Note that the image is always rendered to an internal "canvas" of a certain size. You always
specify the width; the height is either specified, or determined based on the document's
content. Once the image is created, it can be scaled, but there is always an image created at
the original, target size during rendering.

Java2DRenderer is a mostly-immutable object, in the sense that once you've used it to render
a document, it won't re-render. You must set your renderer up, provide all options, then
render. You can reuse instances of scaling options, rendering hints, image writers, just not
the renderer itself.

Page  of 19 29



Printing

Unfortunately, in release R6 we had a regression in our printing routines, and printing
documents directly (using  ) is not supported. What you can do is renderXHTMLPrintable

your document to a  and print that—as described in our section on .PDF creating  filesPDF
We plan to have printing support available again in a future release—note that most of the
capabilities are there, so if you are interested, contact us on our mailing list for how to
implement this.

Putting It All Together

Jacobus Steenkamp has written an article (October 2006) about using Flying Saucer to
generate , image and  (!) output, targeted for on-the-fly generation. The article is PDF SVG

 and is available on Combine  Facelets and the Flying Saucer  RendererJSF XHTML
.http://java.net

Creating  FilesPDF

You can use Flying Saucer to generate  files directly from /CSS input. This meansPDF XML
that just by starting with  and , you can create portable  documents that willXHTML CSS PDF
are readable by the standard  or other  readers.Adobe Acrobat Reader PDF

PDF files are treated as  media, as defined by the , in the section paged CSS 2.1 Specification
. This means that some  attributes that apply to paged media (as opposed toPaged media CSS

visual media, like a browser) are used to control  output. Flying Saucer supports the PDF
 rule, which means that page size, page margins and page break controls are all@page

supported for  output.PDF

As paged media, the  which applies is that marked with the "media" attribute or "print"CSS
or "all"; this is described in the chapter on  in the .Media types CSS 2.1 Specification

Josh Marinacci has also written an article (June 2007) about using Flying Saucer to generate 
 documents; the article is PDF Generating PDFs for Fun and Profit with Flying Saucer and
 and is available on .iText http://java.net

Questions and answers about using Flying Saucer for  output:PDF

How do I add custom or specific fonts?
How do I specify fonts for a specific encoding?
How do you control page size?
How do you control page size on  output?PDF
How do you control page margins on  output?PDF
What controls pagination?
What about  bookmarks?PDF
What about embedded ../images? Are ../images downscaled?
Does Flying Saucer support  form components?PDF
How do I control font smoothing (anti-aliasing?)

Page  of 20 29



How do I add custom or specific fonts?

By default, the iText library only includes a subset of fonts, as do  reader applications.PDF
You may need to register additional fonts used in your document so they may be included
with the .PDF

For each font you need, make the following call:

ITextRenderer renderer = new ITextRenderer();
FontResolver resolver = renderer.getFontResolver();
renderer.getFontResolver().addFont("C:\\WINDOWS\\FONTS\\ARIAL.TTF", true);

In this case, we're providing the location of a TrueType font file on a Windows machine; in
any case, it needs to be the location of a TrueType file as a file path.

Thanks to Sean Wesenberg for this tip.

How do I specify fonts for a specific encoding?

It's actually better, since the  library provides code to parse font files and return fontiText
measurements.

That said, the default encoding is Latin-1; if your content is encoded differently, you may
have problems where certain characters are not recognized and don't appear correctly in the
output. You will need to specify a different encoding for a specific font, by registering the
font with the  instance you're using before you call . ForITextRenderer setDocument()

example, to support Unicode/UTF-8, you'd need

ITextRenderer renderer = new ITextRenderer();
FontResolver resolver = renderer.getFontResolver();
resolver.addFont (
    "C:\\WINNT\\Fonts\\ARIALUNI.TTF",
    "UTF-8",
    BaseFont.NOT_EMBEDDED
);

Where the font supports Unicode characters (in this example).

Thanks for Manos Bastis for contributing this info and patches.

How do you control page size?

What  attributes correspond to "page size" (e.g. letter, legal, A4) in  and ?CSS CSS XHTML

The  property as documented in the . Everything in the specsize CSS3 Paged Media module
is implemented except auto page handling (the default stylesheet currently sets letter-sized
paper with a half-inch margin)

Page  of 21 29



How do you control page size on  output?PDF

What  attributes correspond to "page size" as we understand that in a word processor,CSS
e.g. US Letter, Legal, or A4?

CSS 2.1 does not support a page size output. Although Flying Saucer currently targets the 2.1
spec, in this case we brought in a  property, . You specify this as part of the CSS3 size @page

rule.

@page {  size: 8.5in 11in; }

or

@page {  size: letter; }

It's described in more details in the CSS3 specification.

How do you control page margins on  output?PDF

What  attributes correspond to "margin" as we understand that in a word processor, e.g.CSS
left and right margin of 1inch? is this padding or margin on the  element?body

You can set margin, padding, and border in a @page rule (also part of the  PagedCSS3
Media module) i.e.

@page {  margin: 1in; }

:first, ,  pseudo-pages are supported.  named pages are not supported.:right :left CSS3

For purposes of pagination, there's nothing special about  (e.g. if  spans 20<body> <body>

pages, your top and bottom margins will appear on pages 1 and 20 respectively).

What controls pagination?

Is there a default pagination (whatever fits in the renderable page boundaries)—but then
what is a "page" size? how can I (in the current code) implement a forced break? which
page-break... does Flying Saucer support right now?

Flying Saucer supports all of the   properties.CSS page-break

The only limitation is that  and  with value page-break-before page-break-after avoid

only considers siblings vs. all margins which meet at that location (as the spec dictates).

If a rule cannot be satisfied (e.g. a  spans<div style="page-break-inside: avoid;">

three pages), the rule is simply dropped as if it never existed.

With the exception of relatively positioned inline content, positioned/floated content will
paginate just like content in the normal flow.

Page  of 22 29



What about  bookmarks?PDF

For , what sorts of -specific things does Flying Saucer support, e.g. do bookmarksPDF PDF
work? is there support for TOCs, footnotes?

Flying Saucer supports bookmarks.

What about embedded ../images? Are ../images downscaled?

Are referenced ../images altered when embedded in the course of generating ?PDF

No.  has its own way of representing image data, but no image fidelity is lost and thePDF
image isn't otherwise modified (e.g. GIFs are stored in a compressed, lossless format; the
size of a  on disk will be the same size as the embedded image in the ).JPEG PDF

For intrinsic width/height calculations we assume a resolution of 96 , but setting anDPI
explicit width/height makes it possible to use an arbitrary .DPI

Does Flying Saucer support  form components?PDF

What happens with form components when generating a ? Is this supported at all (if IPDF
can't a non-editable form in my  output, say, printable form for handwritten entry?PDF

Replaced elements are  -specific. The  renderer doesn't use Graphics2D.OutputDevice PDF
At this point, an  element will be treated like regular content. Adding AcroForm<input>

support is high on the list of priorities for the Flying Saucer team.

How do I control font smoothing (anti-aliasing?)

From our :FAQ

Either
* Set the appropriate  properties:  and configuration xr.text.aa-fontsize-threshhold

xr.text.aa-smoothing-level

* Get the  reference from the XHTMLPanel's  property,Java2DTextRenderer SharedContext

then call  and setSmoothingThreshold() setSmoothingLevel()

Smoothing level should be anything other than . The specific value isTextRenderer.NONE

ignored for Java2D AA.

The threshold is the font size at which AA should kick in, for text; font sizes below that size
will  be drawn with AA.not

Note that on some platforms and JREs, AA can slow things down considerably. It appears to
be much better with more recent JREs, such as Java 6.

Page  of 23 29



Flying Saucer Extensions to the  2.1 SpecificationCSS

As per section  of the , , Flying4.1.2.1 CSS 2.1 Specification Vendor-specific extensions
Saucer includes some extensions to work around limitations in our current implementation,
or limitations in the 2.1 spec. All of these are properties you can use in your  whenCSS
rendering with Flying Saucer, but which will not be recognized by other renderers. While we
can't recommend that you deviate from the spec, you may find some cases where you need to
add a property to get something special done.

All of the properties in the following table are used just like regular properties, within a set of
property declarations.

Table of Extensions

-fs-flow-top

-fs-flow-right

-fs-flow-bottom

 -String value (enclosed in "") or "none". String value should refer to an-fs-flow-left

absolute box named with an -fs-move-to-flow property. Used in an @page rule to define
headers and footers. Has no meaning outside of @page. -right, -bottom and -left are all
described below

-fs-move-to-flow -String value (enclosed in ""). Names an absolute box for reference in
one of the -fs-flow-* properties. See below.

-fs-text-decoration-extent -Either line (default) or block. It controls how text
decorations are drawn on a block level element. With line, the spec compliant behavior is
used: text decoration is drawn across line box. With block, text decoration is drawn across
entire content area of block.

-fs-table-cell-colspan -Whole number. Replaces use of legacy rowspan attribute for
table columns.

-fs-table-cell-rowspan -Whole number. Replaces use of legacy rowspan attribute for
table columns.

Extensions: using the -fs-flow-<top|right|bottom|left>
Properties

The  properties are used within an  declaration-fs-flow-<top|right|bottom|left> @page

to allow some content—say, a div—to appear outside the normal flow, but to control the
position relative to the main body. This is essentially an absolute positioned box where you
don't know the actual coordinates for the box, because they are relative to the rendered
content.

This may sound contradictory, but a good use for this is to create headers and footers in PDF
documents. There are two properties that you coordinate. First, define an

Page  of 24 29



absolutely-positioned div at location 0,0 and assign it a unique name with the 
 property. Then, assign this property name as the value for one of the -fs-move-to-flow

 in the  block.-fs-flow-<top|right|bottom|left> @page

For example, to create a footer in your printed :PDF

<style>
  @page {
  -fs-flow-bottom: "my_footer";
  }
</style>
<body>
  <div style="position: absolute; top: 0; left: 0; \
  -fs-move-to-flow: 'my_footer';" >
    Copyright 2006 The Flying Saucer Team
  </div>
</body>

The name of the div, my_footer, matches the flow property and it is positioned below the
rendered content (the page) on layout.

Page  of 25 29



Configuration

The Flying Saucer Configuration File

The renderer works with a simple,  -based configuration system—nojava.util.Properties

! Our  class loads properties on first accessXML org.xhtmlrenderer.util.Confuration

and makes them available at runtime.

When you are using the renderer,  needs to know where to find the propertiesConfiguration

file. If you are running from the renderer  file, our default properties will be read fromJAR
there. If you have unpacked, or re-packed, the , the location of the file is currentlyJAR
hard-coded as . This path must be on the /resources/conf/xhtmlrenderer.conf

 as it is loaded as a system resource using a ClassLoader. You need to add theCLASSPATH
parent directory for  to your classpath, or include  in your  with/resources /resources JAR
no parent directory.

You can change the default properties for the application right in the  file. However,.conf

this is not a good idea, as you will have to merge your changes back on new releases. Plus, it
will make reporting bugs more complicated. Instead, you can use one of two override
mechanisms for changing the value of individual properties.

Override with Second Configuration File

Your override file should just re-assign values for properties originally given in
xhtmlrenderer.conf. Please see the documentation in that file for a description of what each
property affects.

You can override either by dropping a configuration file in a specific location in your home
directory, or by specifying an override file path using the  System-Dxr.conf=<filename>

property. If you specify the name of the override file on the command line, we do  looknot
for an override file in your home directory.

In your home directory, we look for a specific override file in a specific location, e.g.

$user.home/.flyingsaucer/local.xhtmlrenderer.conf

The user.home variable is a system property. If you call the 
 from within any Java program on your machine, youSystem.getProperty("user.home")

will find out where this is. The location is usually c:\Documents And
 and under the  directory on  systems. Try that method callSettings\{username} /usr UNIX

to see where it is on your machine.

Override with System Properties

You can also override properties one-by-one on the command line, using System properties.
To override a property using the System properties, just re-define the property on the
command line. e.g.

Page  of 26 29



java -Dxr.property-name=new_value org.xhtmlrenderer.HTMLPanel

You can override as many properties as you like. Note that overrides are driven by the
property names in the default configuration file. Specifying a property name not in that file
will have no effect—the property will not be loaded or available for lookup. Logging output
is also controlled in this Configuration file.

If you think an override is not taking, you can change the logging behavior of the
Configuration class. Because of inter-dependencies between Configuration and the logging
system, this is a special-case key, using the System property show-config. The allowed
values are from the  class. Use  to show a lot of detail aboutjava.util.logging.Level ALL
Configuration startup,  for none, and  for regular output, like thisOFF INFO

java -Dshow-config=ALL org.xhtmlrenderer.HTMLPanel

This will output messages to the console as Configuration is loading and looking for
overrides to the default property values for the renderer.

We have just started using the Configuration system late in preparing release R4. Some
runtime behavior that should be configurable (like  parser) is not. If you would likeXHTML
to see some behavior made configurable, shoot us an email.

Looking up Configuration at Runtime

To access a parameter from Configuration at runtime, just use on of the many static methods
on the Configuration class. All of these just take the full name of the property:

String Configuration.valueFor(String)
String Configuration.valueFor(String key, String default)
byte Configuration.valueAsByte(String key, byte default)
double Configuration.valueAsDouble(String key, double default)
float Configuration.valueAsFloat(String key, float default)
int Configuration.valueAsInt(String key, int default)
long Configuration.valueAsLong(String key, long default)
short Configuration.valueAsShort(String key, short default)
boolean Configuration.isTrue(String key, boolean default)
boolean Configuration.isFalse(String key, boolean default)

Logging

The renderer uses the  package for logging information and exceptions atjava.util.logging
runtime. Logging behavior (output) is controlled via the main configuration file. The defaults
may be overridden just like any other configuration properties.

You can turn off  logging from the Flying Saucer library by setting the property ALL
 to false; as described above, you can specify a value forxr.util-logging.loggingEnabled

this on the command line, or in a configuration override file. With this property set to false,
Flying Saucer will be completely silent, but other logging configuration is not affected,
meaning you can "flip the switch" for logging on or off. As of R6, we ship with logging
disabled.

Please review the  package docs before proceeding.java.util.logging

Page  of 27 29



We log to a set of hierarchies. The internal code—everything between a request to load a
page and the page rendering—is logged to a subhierarchy of "plumbing", e.g. plumbing.load.
Our convention is that  and  levels are very important and shouldWARNING SEVERE
always be logged.  messages are useful and but can be excluded if you want a quietINFO
ride. Anything below  (FINE, , ) is generally only interesting for coreINFO FINER FINEST
renderer developers. We don't guarrantee that anything below  will be useful, correct,INFO
practical or informative. You can usually leave log levels at  for most purposes.INFO

If you are modifying the renderer core code and want to add log messages, we recommend
you always use the  class. Using this class ensures that our logorg.xhtmlrenderer.XRLog

configuration is read properly before we write anything out to the log system. The class is
pretty self-explanatory, and all logging methods in it are static. If for some reason you need
to use the  class directly, please use XRLog.getLogger() tojava.util.logging.Logger

retrieve the instance to use.

[java] app.browser INFO:: Loading Page: demo:demos/splash/splash.html
[java] plumbing.general INFO:: ref = jar:file:/X:/build/browser.jar!/demos/splash/splash.html
[java] plumbing.load INFO:: SAX XMLReader in use (parser): com.sun.org.apache.xerces.internal.parsers.SAXParser
[java] plumbing.load FINE:: SAX Parser: by request, not changing any parser features.
[java] plumbing.load INFO:: Loaded document in ~16ms
[java] plumbing.general INFO:: ref = jar:file:/X:/build/browser.jar!/demos/splash/splash.html
[java] plumbing.load INFO:: TIME: parse stylesheets  15ms
[java] plumbing.match INFO:: media = screen
[java] plumbing.load INFO:: Requesting stylesheet: http://www.w3.org/1999/xhtml
[java] plumbing.match INFO:: Matcher created with 147 selectors
[java] plumbing.layout INFO:: Layout took 156ms
[java] app.browser INFO:: Loading Page: demo:demos/new/formattedtext.xhtml
[java] plumbing.general INFO:: ref = jar:file:/X:/build/browser.jar!/demos/new/formattedtext.xhtml
[java] plumbing.load INFO:: SAX XMLReader in use (parser): com.sun.org.apache.xerces.internal.parsers.SAXParser
[java] plumbing.load FINE:: SAX Parser: by request, not changing any parser features.
[java] plumbing.load INFO:: Loaded document in ~16ms
[java] plumbing.general INFO:: ref = jar:file:/X:/build/browser.jar!/demos/new/formattedtext.xhtml
[java] plumbing.load INFO:: TIME: parse stylesheets  0ms
[java] plumbing.match INFO:: media = screen
[java] plumbing.load INFO:: Requesting stylesheet: http://www.w3.org/1999/xhtml
[java] plumbing.load INFO:: Requesting stylesheet: jar:file:/X:/build/browser.jar!/demos/new/general.css
[java] plumbing.match INFO:: Matcher created with 156 selectors
[java] plumbing.layout INFO:: Layout took 63ms

Page  of 28 29



About this Document

This project website and our User's Guide are produced using the Xilize
(http://xilize.sourceforge.net/) syntax and rendering engine. The content is written
in Xilize text markup, then converted to  using the Xilize converter.XHTML

We'd like to thank the Xilize team at CenteredWork for sharing this library. Try it out! It's a
great way to write websites quickly, without losing control over formatting. Check it out!

Editing took place using the legendary jEdit editor
(http://www.jedit.org/) editor. Xilize produces a plugin for jEdit, where

you get syntax highlighting for the Xilize markup, quick markup controls, and a XIL
converter all built-in to the editor.

JetBrains, the makers of , has generously sponsored a license letting us use IntelliJ IDEA
 on this project under their Open Source Program. We are grateful for their support!IDEA

Last, the  files were converted to  using the Flying Saucer  renderer straightXHTML PDF PDF
from R6! No post-processing of the document was done. The formatting, style and all were
read from , so if it's ugly, it's this author's fault!CSS

Links:

Xilize http://xilize.sourceforge.net/
jEdit http://www.jedit.org

Page  of 29 29


